/* Header for multibyte character handler. Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN. Licensed to the Free Software Foundation. Copyright (C) 2001 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #ifndef EMACS_CHARSET_H #define EMACS_CHARSET_H /* #define BYTE_COMBINING_DEBUG */ /*** GENERAL NOTE on CHARACTER SET (CHARSET) *** A character set ("charset" hereafter) is a meaningful collection (i.e. language, culture, functionality, etc) of characters. Emacs handles multiple charsets at once. Each charset corresponds to one of the ISO charsets. Emacs identifies a charset by a unique identification number, whereas ISO identifies a charset by a triplet of DIMENSION, CHARS and FINAL-CHAR. So, hereafter, just saying "charset" means an identification number (integer value). The value range of charsets is 0x00, 0x81..0xFE. There are four kinds of charset depending on DIMENSION (1 or 2) and CHARS (94 or 96). For instance, a charset of DIMENSION2_CHARS94 contains 94x94 characters. Within Emacs Lisp, a charset is treated as a symbol which has a property `charset'. The property value is a vector containing various information about the charset. For readability of C code, we use the following convention for C variable names: charset_symbol: Emacs Lisp symbol of a charset charset_id: Emacs Lisp integer of an identification number of a charset charset: C integer of an identification number of a charset Each charset (except for ascii) is assigned a base leading-code (range 0x80..0x9E). In addition, a charset of greater than 0xA0 (whose base leading-code is 0x9A..0x9D) is assigned an extended leading-code (range 0xA0..0xFE). In this case, each base leading-code specifies the allowable range of extended leading-code as shown in the table below. A leading-code is used to represent a character in Emacs' buffer and string. We call a charset which has extended leading-code a "private charset" because those are mainly for a charset which is not yet registered by ISO. On the contrary, we call a charset which does not have extended leading-code an "official charset". --------------------------------------------------------------------------- charset dimension base leading-code extended leading-code --------------------------------------------------------------------------- 0x00 official dim1 -- none -- -- none -- (ASCII) 0x01..0x7F --never used-- 0x80 official dim1 -- none -- -- none -- (eight-bit-graphic) 0x81..0x8F official dim1 same as charset -- none -- 0x90..0x99 official dim2 same as charset -- none -- 0x9A..0x9D --never used-- 0x9E official dim1 same as charset -- none -- (eight-bit-control) 0x9F --never used-- 0xA0..0xDF private dim1 0x9A same as charset of 1-column width 0xE0..0xEF private dim1 0x9B same as charset of 2-column width 0xF0..0xF4 private dim2 0x9C same as charset of 1-column width 0xF5..0xFE private dim2 0x9D same as charset of 2-column width 0xFF --never used-- --------------------------------------------------------------------------- */ /* Definition of special leading-codes. */ /* Leading-code followed by extended leading-code. */ #define LEADING_CODE_PRIVATE_11 0x9A /* for private DIMENSION1 of 1-column */ #define LEADING_CODE_PRIVATE_12 0x9B /* for private DIMENSION1 of 2-column */ #define LEADING_CODE_PRIVATE_21 0x9C /* for private DIMENSION2 of 1-column */ #define LEADING_CODE_PRIVATE_22 0x9D /* for private DIMENSION2 of 2-column */ #define LEADING_CODE_8_BIT_CONTROL 0x9E /* for `eight-bit-control' */ /* Extended leading-code. */ /* Start of each extended leading-codes. */ #define LEADING_CODE_EXT_11 0xA0 /* follows LEADING_CODE_PRIVATE_11 */ #define LEADING_CODE_EXT_12 0xE0 /* follows LEADING_CODE_PRIVATE_12 */ #define LEADING_CODE_EXT_21 0xF0 /* follows LEADING_CODE_PRIVATE_21 */ #define LEADING_CODE_EXT_22 0xF5 /* follows LEADING_CODE_PRIVATE_22 */ /* Maximum value of extended leading-codes. */ #define LEADING_CODE_EXT_MAX 0xFE /* Definition of minimum/maximum charset of each DIMENSION. */ #define MIN_CHARSET_OFFICIAL_DIMENSION1 0x80 #define MAX_CHARSET_OFFICIAL_DIMENSION1 0x8F #define MIN_CHARSET_OFFICIAL_DIMENSION2 0x90 #define MAX_CHARSET_OFFICIAL_DIMENSION2 0x99 #define MIN_CHARSET_PRIVATE_DIMENSION1 LEADING_CODE_EXT_11 #define MIN_CHARSET_PRIVATE_DIMENSION2 LEADING_CODE_EXT_21 /* Maximum value of overall charset identification number. */ #define MAX_CHARSET 0xFE /* Definition of special charsets. */ #define CHARSET_ASCII 0 /* 0x00..0x7F */ #define CHARSET_8_BIT_CONTROL 0x9E /* 0x80..0x9F */ #define CHARSET_8_BIT_GRAPHIC 0x80 /* 0xA0..0xFF */ extern int charset_latin_iso8859_1; /* ISO8859-1 (Latin-1) */ extern int charset_jisx0208_1978; /* JISX0208.1978 (Japanese Kanji old set) */ extern int charset_jisx0208; /* JISX0208.1983 (Japanese Kanji) */ extern int charset_katakana_jisx0201; /* JISX0201.Kana (Japanese Katakana) */ extern int charset_latin_jisx0201; /* JISX0201.Roman (Japanese Roman) */ extern int charset_big5_1; /* Big5 Level 1 (Chinese Traditional) */ extern int charset_big5_2; /* Big5 Level 2 (Chinese Traditional) */ /* Check if CH is an ASCII character or a base leading-code. Nowadays, any byte can be the first byte of a character in a multibyte buffer/string. So this macro name is not appropriate. */ #define CHAR_HEAD_P(ch) ((unsigned char) (ch) < 0xA0) /*** GENERAL NOTE on CHARACTER REPRESENTATION *** Firstly, the term "character" or "char" is used for a multilingual character (of course, including ASCII characters), not for a byte in computer memory. We use the term "code" or "byte" for the latter case. A character is identified by charset and one or two POSITION-CODEs. POSITION-CODE is the position of the character in the charset. A character of DIMENSION1 charset has one POSITION-CODE: POSITION-CODE-1. A character of DIMENSION2 charset has two POSITION-CODE: POSITION-CODE-1 and POSITION-CODE-2. The code range of POSITION-CODE is 0x20..0x7F. Emacs has two kinds of representation of a character: multi-byte form (for buffers and strings) and single-word form (for character objects in Emacs Lisp). The latter is called "character code" hereafter. Both representations encode the information of charset and POSITION-CODE but in a different way (for instance, the MSB of POSITION-CODE is set in multi-byte form). For details of the multi-byte form, see the section "2. Emacs internal format handlers" of `coding.c'. Emacs uses 19 bits for a character code. The bits are divided into 3 fields: FIELD1(5bits):FIELD2(7bits):FIELD3(7bits). A character code of DIMENSION1 character uses FIELD2 to hold charset and FIELD3 to hold POSITION-CODE-1. A character code of DIMENSION2 character uses FIELD1 to hold charset, FIELD2 and FIELD3 to hold POSITION-CODE-1 and POSITION-CODE-2 respectively. More precisely... FIELD2 of DIMENSION1 character (except for ascii, eight-bit-control, and eight-bit-graphic) is "charset - 0x70". This is to make all character codes except for ASCII and 8-bit codes greater than 256. So, the range of FIELD2 of DIMENSION1 character is 0, 1, or 0x11..0x7F. FIELD1 of DIMENSION2 character is "charset - 0x8F" for official charset and "charset - 0xE0" for private charset. So, the range of FIELD1 of DIMENSION2 character is 0x01..0x1E. ----------------------------------------------------------------------------- charset FIELD1 (5-bit) FIELD2 (7-bit) FIELD3 (7-bit) ----------------------------------------------------------------------------- ascii 0 0 0x00..0x7F eight-bit-control 0 1 0x00..0x1F eight-bit-graphic 0 1 0x20..0x7F DIMENSION1 0 charset - 0x70 POSITION-CODE-1 DIMENSION2(o) charset - 0x8F POSITION-CODE-1 POSITION-CODE-2 DIMENSION2(p) charset - 0xE0 POSITION-CODE-1 POSITION-CODE-2 ----------------------------------------------------------------------------- "(o)": official, "(p)": private ----------------------------------------------------------------------------- */ /* Masks of each field of character code. */ #define CHAR_FIELD1_MASK (0x1F << 14) #define CHAR_FIELD2_MASK (0x7F << 7) #define CHAR_FIELD3_MASK 0x7F /* Macros to access each field of character C. */ #define CHAR_FIELD1(c) (((c) & CHAR_FIELD1_MASK) >> 14) #define CHAR_FIELD2(c) (((c) & CHAR_FIELD2_MASK) >> 7) #define CHAR_FIELD3(c) ((c) & CHAR_FIELD3_MASK) /* Minimum character code of character of each DIMENSION. */ #define MIN_CHAR_OFFICIAL_DIMENSION1 \ ((0x81 - 0x70) << 7) #define MIN_CHAR_PRIVATE_DIMENSION1 \ ((MIN_CHARSET_PRIVATE_DIMENSION1 - 0x70) << 7) #define MIN_CHAR_OFFICIAL_DIMENSION2 \ ((MIN_CHARSET_OFFICIAL_DIMENSION2 - 0x8F) << 14) #define MIN_CHAR_PRIVATE_DIMENSION2 \ ((MIN_CHARSET_PRIVATE_DIMENSION2 - 0xE0) << 14) /* Maximum character code currently used plus 1. */ #define MAX_CHAR (0x1F << 14) /* 1 if C is a single byte character, else 0. */ #define SINGLE_BYTE_CHAR_P(c) ((unsigned) (c) < 0x100) /* 1 if BYTE is an ASCII character in itself, in multibyte mode. */ #define ASCII_BYTE_P(byte) ((byte) < 0x80) /* A char-table containing information on each character set. Unlike ordinary char-tables, this doesn't contain any nested tables. Only the top level elements are used. Each element is a vector of the following information: CHARSET-ID, BYTES, DIMENSION, CHARS, WIDTH, DIRECTION, LEADING-CODE-BASE, LEADING-CODE-EXT, ISO-FINAL-CHAR, ISO-GRAPHIC-PLANE, REVERSE-CHARSET, SHORT-NAME, LONG-NAME, DESCRIPTION, PLIST. CHARSET-ID (integer) is the identification number of the charset. BYTES (integer) is the length of the multi-byte form of a character in the charset: one of 1, 2, 3, and 4. DIMENSION (integer) is the number of bytes to represent a character: 1 or 2. CHARS (integer) is the number of characters in a dimension: 94 or 96. WIDTH (integer) is the number of columns a character in the charset occupies on the screen: one of 0, 1, and 2.. DIRECTION (integer) is the rendering direction of characters in the charset when rendering. If 0, render from left to right, else render from right to left. LEADING-CODE-BASE (integer) is the base leading-code for the charset. LEADING-CODE-EXT (integer) is the extended leading-code for the charset. All charsets of less than 0xA0 have the value 0. ISO-FINAL-CHAR (character) is the final character of the corresponding ISO 2022 charset. It is -1 for such a character that is used only internally (e.g. `eight-bit-control'). ISO-GRAPHIC-PLANE (integer) is the graphic plane to be invoked while encoding to variants of ISO 2022 coding system, one of the following: 0/graphic-plane-left(GL), 1/graphic-plane-right(GR). It is -1 for such a character that is used only internally (e.g. `eight-bit-control'). REVERSE-CHARSET (integer) is the charset which differs only in LEFT-TO-RIGHT value from the charset. If there's no such a charset, the value is -1. SHORT-NAME (string) is the short name to refer to the charset. LONG-NAME (string) is the long name to refer to the charset. DESCRIPTION (string) is the description string of the charset. PLIST (property list) may contain any type of information a user wants to put and get by functions `put-charset-property' and `get-charset-property' respectively. */ extern Lisp_Object Vcharset_table; /* Macros to access various information of CHARSET in Vcharset_table. We provide these macros for efficiency. No range check of CHARSET. */ /* Return entry of CHARSET (C integer) in Vcharset_table. */ #define CHARSET_TABLE_ENTRY(charset) \ XCHAR_TABLE (Vcharset_table)->contents[((charset) == CHARSET_ASCII \ ? 0 : (charset) + 128)] /* Return information INFO-IDX of CHARSET. */ #define CHARSET_TABLE_INFO(charset, info_idx) \ XVECTOR (CHARSET_TABLE_ENTRY (charset))->contents[info_idx] #define CHARSET_ID_IDX (0) #define CHARSET_BYTES_IDX (1) #define CHARSET_DIMENSION_IDX (2) #define CHARSET_CHARS_IDX (3) #define CHARSET_WIDTH_IDX (4) #define CHARSET_DIRECTION_IDX (5) #define CHARSET_LEADING_CODE_BASE_IDX (6) #define CHARSET_LEADING_CODE_EXT_IDX (7) #define CHARSET_ISO_FINAL_CHAR_IDX (8) #define CHARSET_ISO_GRAPHIC_PLANE_IDX (9) #define CHARSET_REVERSE_CHARSET_IDX (10) #define CHARSET_SHORT_NAME_IDX (11) #define CHARSET_LONG_NAME_IDX (12) #define CHARSET_DESCRIPTION_IDX (13) #define CHARSET_PLIST_IDX (14) /* Size of a vector of each entry of Vcharset_table. */ #define CHARSET_MAX_IDX (15) /* And several more macros to be used frequently. */ #define CHARSET_BYTES(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_BYTES_IDX)) #define CHARSET_DIMENSION(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIMENSION_IDX)) #define CHARSET_CHARS(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_CHARS_IDX)) #define CHARSET_WIDTH(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_WIDTH_IDX)) #define CHARSET_DIRECTION(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_DIRECTION_IDX)) #define CHARSET_LEADING_CODE_BASE(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_BASE_IDX)) #define CHARSET_LEADING_CODE_EXT(charset) \ XFASTINT (CHARSET_TABLE_INFO (charset, CHARSET_LEADING_CODE_EXT_IDX)) #define CHARSET_ISO_FINAL_CHAR(charset) \ XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_FINAL_CHAR_IDX)) #define CHARSET_ISO_GRAPHIC_PLANE(charset) \ XINT (CHARSET_TABLE_INFO (charset, CHARSET_ISO_GRAPHIC_PLANE_IDX)) #define CHARSET_REVERSE_CHARSET(charset) \ XINT (CHARSET_TABLE_INFO (charset, CHARSET_REVERSE_CHARSET_IDX)) /* Macros to specify direction of a charset. */ #define CHARSET_DIRECTION_LEFT_TO_RIGHT 0 #define CHARSET_DIRECTION_RIGHT_TO_LEFT 1 /* A vector of charset symbol indexed by charset-id. This is used only for returning charset symbol from C functions. */ extern Lisp_Object Vcharset_symbol_table; /* Return symbol of CHARSET. */ #define CHARSET_SYMBOL(charset) \ XVECTOR (Vcharset_symbol_table)->contents[charset] /* 1 if CHARSET is in valid value range, else 0. */ #define CHARSET_VALID_P(charset) \ ((charset) == 0 \ || ((charset) > 0x80 && (charset) <= MAX_CHARSET_OFFICIAL_DIMENSION2) \ || ((charset) >= MIN_CHARSET_PRIVATE_DIMENSION1 \ && (charset) <= MAX_CHARSET) \ || ((charset) == CHARSET_8_BIT_CONTROL) \ || ((charset) == CHARSET_8_BIT_GRAPHIC)) /* 1 if CHARSET is already defined, else 0. */ #define CHARSET_DEFINED_P(charset) \ (((charset) >= 0) && ((charset) <= MAX_CHARSET) \ && !NILP (CHARSET_TABLE_ENTRY (charset))) /* Since the information CHARSET-BYTES and CHARSET-WIDTH of Vcharset_table can be retrieved only by the first byte of multi-byte form (an ASCII code or a base leading-code), we provide here tables to be used by macros BYTES_BY_CHAR_HEAD and WIDTH_BY_CHAR_HEAD for faster information retrieval. */ extern int bytes_by_char_head[256]; extern int width_by_char_head[256]; #define BYTES_BY_CHAR_HEAD(char_head) \ (ASCII_BYTE_P (char_head) ? 1 : bytes_by_char_head[char_head]) #define WIDTH_BY_CHAR_HEAD(char_head) \ (ASCII_BYTE_P (char_head) ? 1 : width_by_char_head[char_head]) /* Charset of the character C. */ #define CHAR_CHARSET(c) \ (SINGLE_BYTE_CHAR_P (c) \ ? (ASCII_BYTE_P (c) \ ? CHARSET_ASCII \ : (c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC) \ : ((c) < MIN_CHAR_OFFICIAL_DIMENSION2 \ ? CHAR_FIELD2 (c) + 0x70 \ : ((c) < MIN_CHAR_PRIVATE_DIMENSION2 \ ? CHAR_FIELD1 (c) + 0x8F \ : CHAR_FIELD1 (c) + 0xE0))) /* Check if two characters C1 and C2 belong to the same charset. */ #define SAME_CHARSET_P(c1, c2) \ (c1 < MIN_CHAR_OFFICIAL_DIMENSION2 \ ? (c1 & CHAR_FIELD2_MASK) == (c2 & CHAR_FIELD2_MASK) \ : (c1 & CHAR_FIELD1_MASK) == (c2 & CHAR_FIELD1_MASK)) /* Return a character of which charset is CHARSET and position-codes are C1 and C2. DIMENSION1 character ignores C2. */ #define MAKE_CHAR(charset, c1, c2) \ ((charset) == CHARSET_ASCII \ ? (c1) & 0x7F \ : (((charset) == CHARSET_8_BIT_CONTROL \ || (charset) == CHARSET_8_BIT_GRAPHIC) \ ? ((c1) & 0x7F) | 0x80 \ : ((CHARSET_DEFINED_P (charset) \ ? CHARSET_DIMENSION (charset) == 1 \ : (charset) < MIN_CHARSET_PRIVATE_DIMENSION2) \ ? (((charset) - 0x70) << 7) | ((c1) <= 0 ? 0 : ((c1) & 0x7F)) \ : ((((charset) \ - ((charset) < MIN_CHARSET_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)) \ << 14) \ | ((c2) <= 0 ? 0 : ((c2) & 0x7F)) \ | ((c1) <= 0 ? 0 : (((c1) & 0x7F) << 7)))))) /* If GENERICP is nonzero, return nonzero iff C is a valid normal or generic character. If GENERICP is zero, return nonzero iff C is a valid normal character. */ #define CHAR_VALID_P(c, genericp) \ ((c) >= 0 \ && (SINGLE_BYTE_CHAR_P (c) || char_valid_p (c, genericp))) /* This default value is used when nonascii-translation-table or nonascii-insert-offset fail to convert unibyte character to a valid multibyte character. This makes a Latin-1 character. */ #define DEFAULT_NONASCII_INSERT_OFFSET 0x800 /* Parse multibyte string STR of length LENGTH and set BYTES to the byte length of a character at STR. */ #ifdef BYTE_COMBINING_DEBUG #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \ do { \ int i = 1; \ while (i < (length) && ! CHAR_HEAD_P ((str)[i])) i++; \ (bytes) = BYTES_BY_CHAR_HEAD ((str)[0]); \ if ((bytes) > i) \ abort (); \ } while (0) #else /* not BYTE_COMBINING_DEBUG */ #define PARSE_MULTIBYTE_SEQ(str, length, bytes) \ (bytes) = BYTES_BY_CHAR_HEAD ((str)[0]) #endif /* not BYTE_COMBINING_DEBUG */ /* Return 1 iff the byte sequence at unibyte string STR (LENGTH bytes) is valid as a multibyte form. If valid, by a side effect, BYTES is set to the byte length of the multibyte form. */ #define UNIBYTE_STR_AS_MULTIBYTE_P(str, length, bytes) \ (((str)[0] < 0x80 || (str)[0] >= 0xA0) \ ? (bytes) = 1 \ : (((bytes) = BYTES_BY_CHAR_HEAD ((str)[0])), \ ((bytes) > 1 && (bytes) <= (length) \ && (str)[0] != LEADING_CODE_8_BIT_CONTROL \ && !CHAR_HEAD_P ((str)[1]) \ && ((bytes) == 2 \ || (!CHAR_HEAD_P ((str)[2]) \ && ((bytes) == 3 \ || !CHAR_HEAD_P ((str)[3]))))))) /* Return 1 iff the byte sequence at multibyte string STR is valid as a unibyte form. By a side effect, BYTES is set to the byte length of one character at STR. */ #define MULTIBYTE_STR_AS_UNIBYTE_P(str, bytes) \ ((bytes) = BYTES_BY_CHAR_HEAD ((str)[0]), \ (str)[0] != LEADING_CODE_8_BIT_CONTROL) /* The charset of character C is stored in CHARSET, and the position-codes of C are stored in C1 and C2. We store -1 in C2 if the dimension of the charset is 1. */ #define SPLIT_CHAR(c, charset, c1, c2) \ (SINGLE_BYTE_CHAR_P (c) \ ? ((charset \ = (ASCII_BYTE_P (c) \ ? CHARSET_ASCII \ : ((c) < 0xA0 ? CHARSET_8_BIT_CONTROL : CHARSET_8_BIT_GRAPHIC))), \ c1 = (c), c2 = -1) \ : ((c) & CHAR_FIELD1_MASK \ ? (charset = (CHAR_FIELD1 (c) \ + ((c) < MIN_CHAR_PRIVATE_DIMENSION2 ? 0x8F : 0xE0)), \ c1 = CHAR_FIELD2 (c), \ c2 = CHAR_FIELD3 (c)) \ : (charset = CHAR_FIELD2 (c) + 0x70, \ c1 = CHAR_FIELD3 (c), \ c2 = -1))) /* Return 1 iff character C has valid printable glyph. */ #define CHAR_PRINTABLE_P(c) (ASCII_BYTE_P (c) || char_printable_p (c)) /* The charset of the character at STR is stored in CHARSET, and the position-codes are stored in C1 and C2. We store -1 in C2 if the character is just 2 bytes. */ #define SPLIT_STRING(str, len, charset, c1, c2) \ ((BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) < 2 \ || BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) > len \ || split_string (str, len, &charset, &c1, &c2) < 0) \ ? c1 = *(str), charset = CHARSET_ASCII \ : charset) /* Mapping table from ISO2022's charset (specified by DIMENSION, CHARS, and FINAL_CHAR) to Emacs' charset. Should be accessed by macro ISO_CHARSET_TABLE (DIMENSION, CHARS, FINAL_CHAR). */ extern int iso_charset_table[2][2][128]; #define ISO_CHARSET_TABLE(dimension, chars, final_char) \ iso_charset_table[XINT (dimension) - 1][XINT (chars) > 94][XINT (final_char)] #define BASE_LEADING_CODE_P(c) (BYTES_BY_CHAR_HEAD ((unsigned char) (c)) > 1) /* Return how many bytes C will occupy in a multibyte buffer. */ #define CHAR_BYTES(c) \ (SINGLE_BYTE_CHAR_P (c) \ ? ((ASCII_BYTE_P (c) || (c) >= 0xA0) ? 1 : 2) \ : char_bytes (c)) /* The following two macros CHAR_STRING and STRING_CHAR are the main entry points to convert between Emacs's two types of character representations: multi-byte form and single-word form (character code). */ /* Store multi-byte form of the character C in STR. The caller should allocate at least MAX_MULTIBYTE_LENGTH bytes area at STR in advance. Returns the length of the multi-byte form. If C is an invalid character code, signal an error. */ #define CHAR_STRING(c, str) \ (SINGLE_BYTE_CHAR_P (c) \ ? ((ASCII_BYTE_P (c) || c >= 0xA0) \ ? (*(str) = (unsigned char)(c), 1) \ : (*(str) = LEADING_CODE_8_BIT_CONTROL, *((str)+ 1) = c + 0x20, 2)) \ : char_to_string (c, (unsigned char *) str)) /* Like CHAR_STRING but don't signal an error if C is invalid. Value is -1 in this case. */ #define CHAR_STRING_NO_SIGNAL(c, str) \ (SINGLE_BYTE_CHAR_P (c) \ ? ((ASCII_BYTE_P (c) || c >= 0xA0) \ ? (*(str) = (unsigned char)(c), 1) \ : (*(str) = LEADING_CODE_8_BIT_CONTROL, *((str)+ 1) = c + 0x20, 2)) \ : char_to_string_1 (c, (unsigned char *) str)) /* Return a character code of the character of which multi-byte form is at STR and the length is LEN. If STR doesn't contain valid multi-byte form, only the first byte in STR is returned. */ #define STRING_CHAR(str, len) \ (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \ ? (unsigned char) *(str) \ : string_to_char (str, len, 0)) /* This is like STRING_CHAR but the third arg ACTUAL_LEN is set to the length of the multi-byte form. Just to know the length, use MULTIBYTE_FORM_LENGTH. */ #define STRING_CHAR_AND_LENGTH(str, len, actual_len) \ (BYTES_BY_CHAR_HEAD ((unsigned char) *(str)) == 1 \ ? ((actual_len) = 1), (unsigned char) *(str) \ : string_to_char (str, len, &(actual_len))) /* Fetch the "next" character from Lisp string STRING at byte position BYTEIDX, character position CHARIDX. Store it into OUTPUT. All the args must be side-effect-free. BYTEIDX and CHARIDX must be lvalues; we increment them past the character fetched. */ #define FETCH_STRING_CHAR_ADVANCE(OUTPUT, STRING, CHARIDX, BYTEIDX) \ if (1) \ { \ CHARIDX++; \ if (STRING_MULTIBYTE (STRING)) \ { \ unsigned char *ptr = &XSTRING (STRING)->data[BYTEIDX]; \ int space_left = XSTRING (STRING)->size_byte - BYTEIDX; \ int actual_len; \ \ OUTPUT = STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \ BYTEIDX += actual_len; \ } \ else \ OUTPUT = XSTRING (STRING)->data[BYTEIDX++]; \ } \ else /* Like FETCH_STRING_CHAR_ADVANCE but assume STRING is multibyte. */ #define FETCH_STRING_CHAR_ADVANCE_NO_CHECK(OUTPUT, STRING, CHARIDX, BYTEIDX) \ if (1) \ { \ unsigned char *fetch_string_char_ptr = &XSTRING (STRING)->data[BYTEIDX]; \ int fetch_string_char_space_left = XSTRING (STRING)->size_byte - BYTEIDX; \ int actual_len; \ \ OUTPUT \ = STRING_CHAR_AND_LENGTH (fetch_string_char_ptr, \ fetch_string_char_space_left, actual_len); \ \ BYTEIDX += actual_len; \ CHARIDX++; \ } \ else /* Like FETCH_STRING_CHAR_ADVANCE but fetch character from the current buffer. */ #define FETCH_CHAR_ADVANCE(OUTPUT, CHARIDX, BYTEIDX) \ if (1) \ { \ CHARIDX++; \ if (!NILP (current_buffer->enable_multibyte_characters)) \ { \ unsigned char *ptr = BYTE_POS_ADDR (BYTEIDX); \ int space_left = ((CHARIDX < GPT ? GPT_BYTE : Z_BYTE) - BYTEIDX); \ int actual_len; \ \ OUTPUT= STRING_CHAR_AND_LENGTH (ptr, space_left, actual_len); \ BYTEIDX += actual_len; \ } \ else \ { \ OUTPUT = *(BYTE_POS_ADDR (BYTEIDX)); \ BYTEIDX++; \ } \ } \ else /* Return the length of the multi-byte form at string STR of length LEN. */ #define MULTIBYTE_FORM_LENGTH(str, len) \ (BYTES_BY_CHAR_HEAD (*(unsigned char *)(str)) == 1 \ ? 1 \ : multibyte_form_length (str, len)) #ifdef emacs /* Increase the buffer byte position POS_BYTE of the current buffer to the next character boundary. This macro relies on the fact that *GPT_ADDR and *Z_ADDR are always accessible and the values are '\0'. No range checking of POS. */ #ifdef BYTE_COMBINING_DEBUG #define INC_POS(pos_byte) \ do { \ unsigned char *p = BYTE_POS_ADDR (pos_byte); \ if (BASE_LEADING_CODE_P (*p)) \ { \ int len, bytes; \ len = Z_BYTE - pos_byte; \ PARSE_MULTIBYTE_SEQ (p, len, bytes); \ pos_byte += bytes; \ } \ else \ pos_byte++; \ } while (0) #else /* not BYTE_COMBINING_DEBUG */ #define INC_POS(pos_byte) \ do { \ unsigned char *p = BYTE_POS_ADDR (pos_byte); \ pos_byte += BYTES_BY_CHAR_HEAD (*p); \ } while (0) #endif /* not BYTE_COMBINING_DEBUG */ /* Decrease the buffer byte position POS_BYTE of the current buffer to the previous character boundary. No range checking of POS. */ #define DEC_POS(pos_byte) \ do { \ unsigned char *p, *p_min; \ \ pos_byte--; \ if (pos_byte < GPT_BYTE) \ p = BEG_ADDR + pos_byte - 1, p_min = BEG_ADDR; \ else \ p = BEG_ADDR + GAP_SIZE + pos_byte - 1, p_min = GAP_END_ADDR; \ if (p > p_min && !CHAR_HEAD_P (*p)) \ { \ unsigned char *pend = p--; \ int len, bytes; \ while (p > p_min && !CHAR_HEAD_P (*p)) p--; \ len = pend + 1 - p; \ PARSE_MULTIBYTE_SEQ (p, len, bytes); \ if (bytes == len) \ pos_byte -= len - 1; \ } \ } while (0) /* Increment both CHARPOS and BYTEPOS, each in the appropriate way. */ #define INC_BOTH(charpos, bytepos) \ do \ { \ (charpos)++; \ if (NILP (current_buffer->enable_multibyte_characters)) \ (bytepos)++; \ else \ INC_POS ((bytepos)); \ } \ while (0) /* Decrement both CHARPOS and BYTEPOS, each in the appropriate way. */ #define DEC_BOTH(charpos, bytepos) \ do \ { \ (charpos)--; \ if (NILP (current_buffer->enable_multibyte_characters)) \ (bytepos)--; \ else \ DEC_POS ((bytepos)); \ } \ while (0) /* Increase the buffer byte position POS_BYTE of the current buffer to the next character boundary. This macro relies on the fact that *GPT_ADDR and *Z_ADDR are always accessible and the values are '\0'. No range checking of POS_BYTE. */ #ifdef BYTE_COMBINING_DEBUG #define BUF_INC_POS(buf, pos_byte) \ do { \ unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \ if (BASE_LEADING_CODE_P (*p)) \ { \ int len, bytes; \ len = BUF_Z_BYTE (buf) - pos_byte; \ PARSE_MULTIBYTE_SEQ (p, len, bytes); \ pos_byte += bytes; \ } \ else \ pos_byte++; \ } while (0) #else /* not BYTE_COMBINING_DEBUG */ #define BUF_INC_POS(buf, pos_byte) \ do { \ unsigned char *p = BUF_BYTE_ADDRESS (buf, pos_byte); \ pos_byte += BYTES_BY_CHAR_HEAD (*p); \ } while (0) #endif /* not BYTE_COMBINING_DEBUG */ /* Decrease the buffer byte position POS_BYTE of the current buffer to the previous character boundary. No range checking of POS_BYTE. */ #define BUF_DEC_POS(buf, pos_byte) \ do { \ unsigned char *p, *p_min; \ pos_byte--; \ if (pos_byte < BUF_GPT_BYTE (buf)) \ { \ p = BUF_BEG_ADDR (buf) + pos_byte - 1; \ p_min = BUF_BEG_ADDR (buf); \ } \ else \ { \ p = BUF_BEG_ADDR (buf) + BUF_GAP_SIZE (buf) + pos_byte - 1; \ p_min = BUF_GAP_END_ADDR (buf); \ } \ if (p > p_min && !CHAR_HEAD_P (*p)) \ { \ unsigned char *pend = p--; \ int len, bytes; \ while (p > p_min && !CHAR_HEAD_P (*p)) p--; \ len = pend + 1 - p; \ PARSE_MULTIBYTE_SEQ (p, len, bytes); \ if (bytes == len) \ pos_byte -= len - 1; \ } \ } while (0) #endif /* emacs */ /* This is the maximum byte length of multi-byte sequence. */ #define MAX_MULTIBYTE_LENGTH 4 extern void invalid_character P_ ((int)); extern int translate_char P_ ((Lisp_Object, int, int, int, int)); extern int split_string P_ ((const unsigned char *, int, int *, unsigned char *, unsigned char *)); extern int char_to_string P_ ((int, unsigned char *)); extern int char_to_string_1 P_ ((int, unsigned char *)); extern int string_to_char P_ ((const unsigned char *, int, int *)); extern int char_printable_p P_ ((int c)); extern int multibyte_form_length P_ ((const unsigned char *, int)); extern void parse_str_as_multibyte P_ ((unsigned char *, int, int *, int *)); extern int str_as_multibyte P_ ((unsigned char *, int, int, int *)); extern int parse_str_to_multibyte P_ ((unsigned char *, int)); extern int str_to_multibyte P_ ((unsigned char *, int, int)); extern int str_as_unibyte P_ ((unsigned char *, int)); extern int get_charset_id P_ ((Lisp_Object)); extern int find_charset_in_text P_ ((unsigned char *, int, int, int *, Lisp_Object)); extern int strwidth P_ ((unsigned char *, int)); extern int c_string_width P_ ((unsigned char *, int, int, int *, int *)); extern int lisp_string_width P_ ((Lisp_Object, int, int *, int *)); extern int char_bytes P_ ((int)); extern int char_valid_p P_ ((int, int)); extern Lisp_Object Vtranslation_table_vector; /* Return a translation table of id number ID. */ #define GET_TRANSLATION_TABLE(id) \ (XCDR(XVECTOR(Vtranslation_table_vector)->contents[(id)])) /* A char-table for characters which may invoke auto-filling. */ extern Lisp_Object Vauto_fill_chars; /* Copy LEN bytes from FROM to TO. This macro should be used only when a caller knows that LEN is short and the obvious copy loop is faster than calling bcopy which has some overhead. Copying a multibyte sequence of a multibyte character is the typical case. */ #define BCOPY_SHORT(from, to, len) \ do { \ int i = len; \ unsigned char *from_p = from, *to_p = to; \ while (i--) *to_p++ = *from_p++; \ } while (0) #endif /* EMACS_CHARSET_H */