/* Updating of data structures for redisplay. Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. This file is part of GNU Emacs. GNU Emacs is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GNU Emacs is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU Emacs; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #include #include #ifdef HAVE_UNISTD_H #include #endif #include "lisp.h" #include "termchar.h" #include "termopts.h" #include "termhooks.h" /* cm.h must come after dispextern.h on Windows. */ #include "dispextern.h" #include "cm.h" #include "buffer.h" #include "charset.h" #include "keyboard.h" #include "frame.h" #include "window.h" #include "commands.h" #include "disptab.h" #include "indent.h" #include "intervals.h" #include "blockinput.h" #include "process.h" /* I don't know why DEC Alpha OSF1 fail to compile this file if we include the following file. */ /* #include "systty.h" */ #include "syssignal.h" #ifdef HAVE_X_WINDOWS #include "xterm.h" #endif /* HAVE_X_WINDOWS */ #ifdef HAVE_NTGUI #include "w32term.h" #endif /* HAVE_NTGUI */ #ifdef MAC_OS #include "macterm.h" #endif /* MAC_OS */ /* Include systime.h after xterm.h to avoid double inclusion of time.h. */ #include "systime.h" #include /* To get the prototype for `sleep'. */ #ifdef HAVE_UNISTD_H #include #endif /* Get number of chars of output now in the buffer of a stdio stream. This ought to be built in in stdio, but it isn't. Some s- files override this because their stdio internals differ. */ #ifdef __GNU_LIBRARY__ /* The s- file might have overridden the definition with one that works for the system's C library. But we are using the GNU C library, so this is the right definition for every system. */ #ifdef GNU_LIBRARY_PENDING_OUTPUT_COUNT #define PENDING_OUTPUT_COUNT GNU_LIBRARY_PENDING_OUTPUT_COUNT #else #undef PENDING_OUTPUT_COUNT #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->__bufp - (FILE)->__buffer) #endif #else /* not __GNU_LIBRARY__ */ #if !defined (PENDING_OUTPUT_COUNT) && HAVE_STDIO_EXT_H && HAVE___FPENDING #include #define PENDING_OUTPUT_COUNT(FILE) __fpending (FILE) #endif #ifndef PENDING_OUTPUT_COUNT #define PENDING_OUTPUT_COUNT(FILE) ((FILE)->_ptr - (FILE)->_base) #endif #endif /* not __GNU_LIBRARY__ */ #if defined(HAVE_TERM_H) && defined (GNU_LINUX) && defined (HAVE_LIBNCURSES) #include /* for tgetent */ #endif /* Structure to pass dimensions around. Used for character bounding boxes, glyph matrix dimensions and alike. */ struct dim { int width; int height; }; /* Function prototypes. */ static struct glyph_matrix *save_current_matrix P_ ((struct frame *)); static void restore_current_matrix P_ ((struct frame *, struct glyph_matrix *)); static void fake_current_matrices P_ ((Lisp_Object)); static void redraw_overlapping_rows P_ ((struct window *, int)); static void redraw_overlapped_rows P_ ((struct window *, int)); static int count_blanks P_ ((struct glyph *, int)); static int count_match P_ ((struct glyph *, struct glyph *, struct glyph *, struct glyph *)); static unsigned line_draw_cost P_ ((struct glyph_matrix *, int)); static void update_frame_line P_ ((struct frame *, int)); static struct dim allocate_matrices_for_frame_redisplay P_ ((Lisp_Object, int, int, int, int *)); static void allocate_matrices_for_window_redisplay P_ ((struct window *)); static int realloc_glyph_pool P_ ((struct glyph_pool *, struct dim)); static void adjust_frame_glyphs P_ ((struct frame *)); struct glyph_matrix *new_glyph_matrix P_ ((struct glyph_pool *)); static void free_glyph_matrix P_ ((struct glyph_matrix *)); static void adjust_glyph_matrix P_ ((struct window *, struct glyph_matrix *, int, int, struct dim)); static void change_frame_size_1 P_ ((struct frame *, int, int, int, int, int)); static void swap_glyph_pointers P_ ((struct glyph_row *, struct glyph_row *)); #if GLYPH_DEBUG static int glyph_row_slice_p P_ ((struct glyph_row *, struct glyph_row *)); #endif static void fill_up_frame_row_with_spaces P_ ((struct glyph_row *, int)); static void build_frame_matrix_from_window_tree P_ ((struct glyph_matrix *, struct window *)); static void build_frame_matrix_from_leaf_window P_ ((struct glyph_matrix *, struct window *)); static struct glyph_pool *new_glyph_pool P_ ((void)); static void free_glyph_pool P_ ((struct glyph_pool *)); static void adjust_frame_glyphs_initially P_ ((void)); static void adjust_frame_message_buffer P_ ((struct frame *)); static void adjust_decode_mode_spec_buffer P_ ((struct frame *)); static void fill_up_glyph_row_with_spaces P_ ((struct glyph_row *)); static void build_frame_matrix P_ ((struct frame *)); void clear_current_matrices P_ ((struct frame *)); void scroll_glyph_matrix_range P_ ((struct glyph_matrix *, int, int, int, int)); static void clear_window_matrices P_ ((struct window *, int)); static void fill_up_glyph_row_area_with_spaces P_ ((struct glyph_row *, int)); static int scrolling_window P_ ((struct window *, int)); static int update_window_line P_ ((struct window *, int, int *)); static void update_marginal_area P_ ((struct window *, int, int)); static int update_text_area P_ ((struct window *, int)); static void make_current P_ ((struct glyph_matrix *, struct glyph_matrix *, int)); static void mirror_make_current P_ ((struct window *, int)); void check_window_matrix_pointers P_ ((struct window *)); #if GLYPH_DEBUG static void check_matrix_pointers P_ ((struct glyph_matrix *, struct glyph_matrix *)); #endif static void mirror_line_dance P_ ((struct window *, int, int, int *, char *)); static int update_window_tree P_ ((struct window *, int)); static int update_window P_ ((struct window *, int)); static int update_frame_1 P_ ((struct frame *, int, int)); static void set_window_cursor_after_update P_ ((struct window *)); static int row_equal_p P_ ((struct window *, struct glyph_row *, struct glyph_row *, int)); static void adjust_frame_glyphs_for_window_redisplay P_ ((struct frame *)); static void adjust_frame_glyphs_for_frame_redisplay P_ ((struct frame *)); static void reverse_rows P_ ((struct glyph_matrix *, int, int)); static int margin_glyphs_to_reserve P_ ((struct window *, int, Lisp_Object)); static void sync_window_with_frame_matrix_rows P_ ((struct window *)); struct window *frame_row_to_window P_ ((struct window *, int)); /* Non-zero means don't pause redisplay for pending input. (This is for debugging and for a future implementation of EDT-like scrolling. */ int redisplay_dont_pause; /* Nonzero upon entry to redisplay means do not assume anything about current contents of actual terminal frame; clear and redraw it. */ int frame_garbaged; /* Nonzero means last display completed. Zero means it was preempted. */ int display_completed; /* Lisp variable visible-bell; enables use of screen-flash instead of audible bell. */ int visible_bell; /* Invert the color of the whole frame, at a low level. */ int inverse_video; /* Line speed of the terminal. */ EMACS_INT baud_rate; /* Either nil or a symbol naming the window system under which Emacs is running. */ Lisp_Object Vwindow_system; /* Version number of X windows: 10, 11 or nil. */ Lisp_Object Vwindow_system_version; /* Vector of glyph definitions. Indexed by glyph number, the contents are a string which is how to output the glyph. If Vglyph_table is nil, a glyph is output by using its low 8 bits as a character code. This is an obsolete feature that is no longer used. The variable is retained for compatibility. */ Lisp_Object Vglyph_table; /* Display table to use for vectors that don't specify their own. */ Lisp_Object Vstandard_display_table; /* Nonzero means reading single-character input with prompt so put cursor on mini-buffer after the prompt. Positive means at end of text in echo area; negative means at beginning of line. */ int cursor_in_echo_area; Lisp_Object Qdisplay_table, Qredisplay_dont_pause; /* The currently selected frame. In a single-frame version, this variable always equals the_only_frame. */ Lisp_Object selected_frame; /* A frame which is not just a mini-buffer, or 0 if there are no such frames. This is usually the most recent such frame that was selected. In a single-frame version, this variable always holds the address of the_only_frame. */ struct frame *last_nonminibuf_frame; /* Stdio stream being used for copy of all output. */ FILE *termscript; /* Structure for info on cursor positioning. */ struct cm Wcm; /* 1 means SIGWINCH happened when not safe. */ int delayed_size_change; /* 1 means glyph initialization has been completed at startup. */ static int glyphs_initialized_initially_p; /* Updated window if != 0. Set by update_window. */ struct window *updated_window; /* Glyph row updated in update_window_line, and area that is updated. */ struct glyph_row *updated_row; int updated_area; /* A glyph for a space. */ struct glyph space_glyph; /* Non-zero means update has been performed directly, so that there's no need for redisplay_internal to do much work. Set by direct_output_for_insert. */ int redisplay_performed_directly_p; /* Counts of allocated structures. These counts serve to diagnose memory leaks and double frees. */ int glyph_matrix_count; int glyph_pool_count; /* If non-null, the frame whose frame matrices are manipulated. If null, window matrices are worked on. */ static struct frame *frame_matrix_frame; /* Current interface for window-based redisplay. Set from init_xterm. A null value means we are not using window-based redisplay. */ struct redisplay_interface *rif; /* Non-zero means that fonts have been loaded since the last glyph matrix adjustments. Redisplay must stop, and glyph matrices must be adjusted when this flag becomes non-zero during display. The reason fonts can be loaded so late is that fonts of fontsets are loaded on demand. */ int fonts_changed_p; /* Convert vpos and hpos from frame to window and vice versa. This may only be used for terminal frames. */ #if GLYPH_DEBUG static int window_to_frame_vpos P_ ((struct window *, int)); static int window_to_frame_hpos P_ ((struct window *, int)); #define WINDOW_TO_FRAME_VPOS(W, VPOS) window_to_frame_vpos ((W), (VPOS)) #define WINDOW_TO_FRAME_HPOS(W, HPOS) window_to_frame_hpos ((W), (HPOS)) /* One element of the ring buffer containing redisplay history information. */ struct redisplay_history { char trace[512 + 100]; }; /* The size of the history buffer. */ #define REDISPLAY_HISTORY_SIZE 30 /* The redisplay history buffer. */ static struct redisplay_history redisplay_history[REDISPLAY_HISTORY_SIZE]; /* Next free entry in redisplay_history. */ static int history_idx; /* A tick that's incremented each time something is added to the history. */ static unsigned history_tick; static void add_frame_display_history P_ ((struct frame *, int)); static void add_window_display_history P_ ((struct window *, char *, int)); /* Add to the redisplay history how window W has been displayed. MSG is a trace containing the information how W's glyph matrix has been constructed. PAUSED_P non-zero means that the update has been interrupted for pending input. */ static void add_window_display_history (w, msg, paused_p) struct window *w; char *msg; int paused_p; { char *buf; if (history_idx >= REDISPLAY_HISTORY_SIZE) history_idx = 0; buf = redisplay_history[history_idx].trace; ++history_idx; sprintf (buf, "%d: window %p (`%s')%s\n", history_tick++, w, ((BUFFERP (w->buffer) && STRINGP (XBUFFER (w->buffer)->name)) ? (char *) SDATA (XBUFFER (w->buffer)->name) : "???"), paused_p ? " ***paused***" : ""); strcat (buf, msg); } /* Add to the redisplay history that frame F has been displayed. PAUSED_P non-zero means that the update has been interrupted for pending input. */ static void add_frame_display_history (f, paused_p) struct frame *f; int paused_p; { char *buf; if (history_idx >= REDISPLAY_HISTORY_SIZE) history_idx = 0; buf = redisplay_history[history_idx].trace; ++history_idx; sprintf (buf, "%d: update frame %p%s", history_tick++, f, paused_p ? " ***paused***" : ""); } DEFUN ("dump-redisplay-history", Fdump_redisplay_history, Sdump_redisplay_history, 0, 0, "", doc: /* Dump redisplay history to stderr. */) () { int i; for (i = history_idx - 1; i != history_idx; --i) { if (i < 0) i = REDISPLAY_HISTORY_SIZE - 1; fprintf (stderr, "%s\n", redisplay_history[i].trace); } return Qnil; } #else /* GLYPH_DEBUG == 0 */ #define WINDOW_TO_FRAME_VPOS(W, VPOS) ((VPOS) + WINDOW_TOP_EDGE_LINE (W)) #define WINDOW_TO_FRAME_HPOS(W, HPOS) ((HPOS) + WINDOW_LEFT_EDGE_COL (W)) #endif /* GLYPH_DEBUG == 0 */ /* Like bcopy except never gets confused by overlap. Let this be the first function defined in this file, or change emacs.c where the address of this function is used. */ void safe_bcopy (from, to, size) const char *from; char *to; int size; { if (size <= 0 || from == to) return; /* If the source and destination don't overlap, then bcopy can handle it. If they do overlap, but the destination is lower in memory than the source, we'll assume bcopy can handle that. */ if (to < from || from + size <= to) bcopy (from, to, size); /* Otherwise, we'll copy from the end. */ else { register const char *endf = from + size; register char *endt = to + size; /* If TO - FROM is large, then we should break the copy into nonoverlapping chunks of TO - FROM bytes each. However, if TO - FROM is small, then the bcopy function call overhead makes this not worth it. The crossover point could be about anywhere. Since I don't think the obvious copy loop is too bad, I'm trying to err in its favor. */ if (to - from < 64) { do *--endt = *--endf; while (endf != from); } else { for (;;) { endt -= (to - from); endf -= (to - from); if (endt < to) break; bcopy (endf, endt, to - from); } /* If SIZE wasn't a multiple of TO - FROM, there will be a little left over. The amount left over is (endt + (to - from)) - to, which is endt - from. */ bcopy (from, to, endt - from); } } } /*********************************************************************** Glyph Matrices ***********************************************************************/ /* Allocate and return a glyph_matrix structure. POOL is the glyph pool from which memory for the matrix should be allocated, or null for window-based redisplay where no glyph pools are used. The member `pool' of the glyph matrix structure returned is set to POOL, the structure is otherwise zeroed. */ struct glyph_matrix * new_glyph_matrix (pool) struct glyph_pool *pool; { struct glyph_matrix *result; /* Allocate and clear. */ result = (struct glyph_matrix *) xmalloc (sizeof *result); bzero (result, sizeof *result); /* Increment number of allocated matrices. This count is used to detect memory leaks. */ ++glyph_matrix_count; /* Set pool and return. */ result->pool = pool; return result; } /* Free glyph matrix MATRIX. Passing in a null MATRIX is allowed. The global counter glyph_matrix_count is decremented when a matrix is freed. If the count gets negative, more structures were freed than allocated, i.e. one matrix was freed more than once or a bogus pointer was passed to this function. If MATRIX->pool is null, this means that the matrix manages its own glyph memory---this is done for matrices on X frames. Freeing the matrix also frees the glyph memory in this case. */ static void free_glyph_matrix (matrix) struct glyph_matrix *matrix; { if (matrix) { int i; /* Detect the case that more matrices are freed than were allocated. */ if (--glyph_matrix_count < 0) abort (); /* Free glyph memory if MATRIX owns it. */ if (matrix->pool == NULL) for (i = 0; i < matrix->rows_allocated; ++i) xfree (matrix->rows[i].glyphs[LEFT_MARGIN_AREA]); /* Free row structures and the matrix itself. */ xfree (matrix->rows); xfree (matrix); } } /* Return the number of glyphs to reserve for a marginal area of window W. TOTAL_GLYPHS is the number of glyphs in a complete display line of window W. MARGIN gives the width of the marginal area in canonical character units. MARGIN should be an integer or a float. */ static int margin_glyphs_to_reserve (w, total_glyphs, margin) struct window *w; int total_glyphs; Lisp_Object margin; { int n; if (NUMBERP (margin)) { int width = XFASTINT (w->total_cols); double d = max (0, XFLOATINT (margin)); d = min (width / 2 - 1, d); n = (int) ((double) total_glyphs / width * d); } else n = 0; return n; } /* Adjust glyph matrix MATRIX on window W or on a frame to changed window sizes. W is null if the function is called for a frame glyph matrix. Otherwise it is the window MATRIX is a member of. X and Y are the indices of the first column and row of MATRIX within the frame matrix, if such a matrix exists. They are zero for purely window-based redisplay. DIM is the needed size of the matrix. In window-based redisplay, where no frame matrices exist, glyph matrices manage their own glyph storage. Otherwise, they allocate storage from a common frame glyph pool which can be found in MATRIX->pool. The reason for this memory management strategy is to avoid complete frame redraws if possible. When we allocate from a common pool, a change of the location or size of a sub-matrix within the pool requires a complete redisplay of the frame because we cannot easily make sure that the current matrices of all windows still agree with what is displayed on the screen. While this is usually fast, it leads to screen flickering. */ static void adjust_glyph_matrix (w, matrix, x, y, dim) struct window *w; struct glyph_matrix *matrix; int x, y; struct dim dim; { int i; int new_rows; int marginal_areas_changed_p = 0; int header_line_changed_p = 0; int header_line_p = 0; int left = -1, right = -1; int window_width = -1, window_height; /* See if W had a header line that has disappeared now, or vice versa. Get W's size. */ if (w) { window_box (w, -1, 0, 0, &window_width, &window_height); header_line_p = WINDOW_WANTS_HEADER_LINE_P (w); header_line_changed_p = header_line_p != matrix->header_line_p; } matrix->header_line_p = header_line_p; /* If POOL is null, MATRIX is a window matrix for window-based redisplay. Do nothing if MATRIX' size, position, vscroll, and marginal areas haven't changed. This optimization is important because preserving the matrix means preventing redisplay. */ if (matrix->pool == NULL) { left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols); right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols); xassert (left >= 0 && right >= 0); marginal_areas_changed_p = (left != matrix->left_margin_glyphs || right != matrix->right_margin_glyphs); if (!marginal_areas_changed_p && !fonts_changed_p && !header_line_changed_p && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w) && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w) && matrix->window_height == window_height && matrix->window_vscroll == w->vscroll && matrix->window_width == window_width) return; } /* Enlarge MATRIX->rows if necessary. New rows are cleared. */ if (matrix->rows_allocated < dim.height) { int size = dim.height * sizeof (struct glyph_row); new_rows = dim.height - matrix->rows_allocated; matrix->rows = (struct glyph_row *) xrealloc (matrix->rows, size); bzero (matrix->rows + matrix->rows_allocated, new_rows * sizeof *matrix->rows); matrix->rows_allocated = dim.height; } else new_rows = 0; /* If POOL is not null, MATRIX is a frame matrix or a window matrix on a frame not using window-based redisplay. Set up pointers for each row into the glyph pool. */ if (matrix->pool) { xassert (matrix->pool->glyphs); if (w) { left = margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols); right = margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols); } else left = right = 0; for (i = 0; i < dim.height; ++i) { struct glyph_row *row = &matrix->rows[i]; row->glyphs[LEFT_MARGIN_AREA] = (matrix->pool->glyphs + (y + i) * matrix->pool->ncolumns + x); if (w == NULL || row == matrix->rows + dim.height - 1 || (row == matrix->rows && matrix->header_line_p)) { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA]; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width; row->glyphs[LAST_AREA] = row->glyphs[RIGHT_MARGIN_AREA]; } else { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA] + left; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width - left - right; row->glyphs[LAST_AREA] = row->glyphs[LEFT_MARGIN_AREA] + dim.width; } } matrix->left_margin_glyphs = left; matrix->right_margin_glyphs = right; } else { /* If MATRIX->pool is null, MATRIX is responsible for managing its own memory. It is a window matrix for window-based redisplay. Allocate glyph memory from the heap. */ if (dim.width > matrix->matrix_w || new_rows || header_line_changed_p || marginal_areas_changed_p) { struct glyph_row *row = matrix->rows; struct glyph_row *end = row + matrix->rows_allocated; while (row < end) { row->glyphs[LEFT_MARGIN_AREA] = (struct glyph *) xrealloc (row->glyphs[LEFT_MARGIN_AREA], (dim.width * sizeof (struct glyph))); /* The mode line never has marginal areas. */ if (row == matrix->rows + dim.height - 1 || (row == matrix->rows && matrix->header_line_p)) { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA]; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width; row->glyphs[LAST_AREA] = row->glyphs[RIGHT_MARGIN_AREA]; } else { row->glyphs[TEXT_AREA] = row->glyphs[LEFT_MARGIN_AREA] + left; row->glyphs[RIGHT_MARGIN_AREA] = row->glyphs[TEXT_AREA] + dim.width - left - right; row->glyphs[LAST_AREA] = row->glyphs[LEFT_MARGIN_AREA] + dim.width; } ++row; } } xassert (left >= 0 && right >= 0); matrix->left_margin_glyphs = left; matrix->right_margin_glyphs = right; } /* Number of rows to be used by MATRIX. */ matrix->nrows = dim.height; xassert (matrix->nrows >= 0); if (w) { if (matrix == w->current_matrix) { /* Mark rows in a current matrix of a window as not having valid contents. It's important to not do this for desired matrices. When Emacs starts, it may already be building desired matrices when this function runs. */ if (window_width < 0) window_width = window_box_width (w, -1); /* Optimize the case that only the height has changed (C-x 2, upper window). Invalidate all rows that are no longer part of the window. */ if (!marginal_areas_changed_p && !header_line_changed_p && new_rows == 0 && dim.width == matrix->matrix_w && matrix->window_left_col == WINDOW_LEFT_EDGE_COL (w) && matrix->window_top_line == WINDOW_TOP_EDGE_LINE (w) && matrix->window_width == window_width) { /* Find the last row in the window. */ for (i = 0; i < matrix->nrows && matrix->rows[i].enabled_p; ++i) if (MATRIX_ROW_BOTTOM_Y (matrix->rows + i) >= window_height) { ++i; break; } /* Window end is invalid, if inside of the rows that are invalidated below. */ if (INTEGERP (w->window_end_vpos) && XFASTINT (w->window_end_vpos) >= i) w->window_end_valid = Qnil; while (i < matrix->nrows) matrix->rows[i++].enabled_p = 0; } else { for (i = 0; i < matrix->nrows; ++i) matrix->rows[i].enabled_p = 0; } } else if (matrix == w->desired_matrix) { /* Rows in desired matrices always have to be cleared; redisplay expects this is the case when it runs, so it had better be the case when we adjust matrices between redisplays. */ for (i = 0; i < matrix->nrows; ++i) matrix->rows[i].enabled_p = 0; } } /* Remember last values to be able to optimize frame redraws. */ matrix->matrix_x = x; matrix->matrix_y = y; matrix->matrix_w = dim.width; matrix->matrix_h = dim.height; /* Record the top y location and height of W at the time the matrix was last adjusted. This is used to optimize redisplay above. */ if (w) { matrix->window_left_col = WINDOW_LEFT_EDGE_COL (w); matrix->window_top_line = WINDOW_TOP_EDGE_LINE (w); matrix->window_height = window_height; matrix->window_width = window_width; matrix->window_vscroll = w->vscroll; } } /* Reverse the contents of rows in MATRIX between START and END. The contents of the row at END - 1 end up at START, END - 2 at START + 1 etc. This is part of the implementation of rotate_matrix (see below). */ static void reverse_rows (matrix, start, end) struct glyph_matrix *matrix; int start, end; { int i, j; for (i = start, j = end - 1; i < j; ++i, --j) { /* Non-ISO HP/UX compiler doesn't like auto struct initialization. */ struct glyph_row temp; temp = matrix->rows[i]; matrix->rows[i] = matrix->rows[j]; matrix->rows[j] = temp; } } /* Rotate the contents of rows in MATRIX in the range FIRST .. LAST - 1 by BY positions. BY < 0 means rotate left, i.e. towards lower indices. (Note: this does not copy glyphs, only glyph pointers in row structures are moved around). The algorithm used for rotating the vector was, I believe, first described by Kernighan. See the vector R as consisting of two sub-vectors AB, where A has length BY for BY >= 0. The result after rotating is then BA. Reverse both sub-vectors to get ArBr and reverse the result to get (ArBr)r which is BA. Similar for rotating right. */ void rotate_matrix (matrix, first, last, by) struct glyph_matrix *matrix; int first, last, by; { if (by < 0) { /* Up (rotate left, i.e. towards lower indices). */ by = -by; reverse_rows (matrix, first, first + by); reverse_rows (matrix, first + by, last); reverse_rows (matrix, first, last); } else if (by > 0) { /* Down (rotate right, i.e. towards higher indices). */ reverse_rows (matrix, last - by, last); reverse_rows (matrix, first, last - by); reverse_rows (matrix, first, last); } } /* Increment buffer positions in glyph rows of MATRIX. Do it for rows with indices START <= index < END. Increment positions by DELTA/ DELTA_BYTES. */ void increment_matrix_positions (matrix, start, end, delta, delta_bytes) struct glyph_matrix *matrix; int start, end, delta, delta_bytes; { /* Check that START and END are reasonable values. */ xassert (start >= 0 && start <= matrix->nrows); xassert (end >= 0 && end <= matrix->nrows); xassert (start <= end); for (; start < end; ++start) increment_row_positions (matrix->rows + start, delta, delta_bytes); } /* Enable a range of rows in glyph matrix MATRIX. START and END are the row indices of the first and last + 1 row to enable. If ENABLED_P is non-zero, enabled_p flags in rows will be set to 1. */ void enable_glyph_matrix_rows (matrix, start, end, enabled_p) struct glyph_matrix *matrix; int start, end; int enabled_p; { xassert (start <= end); xassert (start >= 0 && start < matrix->nrows); xassert (end >= 0 && end <= matrix->nrows); for (; start < end; ++start) matrix->rows[start].enabled_p = enabled_p != 0; } /* Clear MATRIX. This empties all rows in MATRIX by setting the enabled_p flag for all rows of the matrix to zero. The function prepare_desired_row will eventually really clear a row when it sees one with a zero enabled_p flag. Resets update hints to defaults value. The only update hint currently present is the flag MATRIX->no_scrolling_p. */ void clear_glyph_matrix (matrix) struct glyph_matrix *matrix; { if (matrix) { enable_glyph_matrix_rows (matrix, 0, matrix->nrows, 0); matrix->no_scrolling_p = 0; } } /* Shift part of the glyph matrix MATRIX of window W up or down. Increment y-positions in glyph rows between START and END by DY, and recompute their visible height. */ void shift_glyph_matrix (w, matrix, start, end, dy) struct window *w; struct glyph_matrix *matrix; int start, end, dy; { int min_y, max_y; xassert (start <= end); xassert (start >= 0 && start < matrix->nrows); xassert (end >= 0 && end <= matrix->nrows); min_y = WINDOW_HEADER_LINE_HEIGHT (w); max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w); for (; start < end; ++start) { struct glyph_row *row = &matrix->rows[start]; row->y += dy; row->visible_height = row->height; if (row->y < min_y) row->visible_height -= min_y - row->y; if (row->y + row->height > max_y) row->visible_height -= row->y + row->height - max_y; } } /* Mark all rows in current matrices of frame F as invalid. Marking invalid is done by setting enabled_p to zero for all rows in a current matrix. */ void clear_current_matrices (f) register struct frame *f; { /* Clear frame current matrix, if we have one. */ if (f->current_matrix) clear_glyph_matrix (f->current_matrix); /* Clear the matrix of the menu bar window, if such a window exists. The menu bar window is currently used to display menus on X when no toolkit support is compiled in. */ if (WINDOWP (f->menu_bar_window)) clear_glyph_matrix (XWINDOW (f->menu_bar_window)->current_matrix); /* Clear the matrix of the tool-bar window, if any. */ if (WINDOWP (f->tool_bar_window)) clear_glyph_matrix (XWINDOW (f->tool_bar_window)->current_matrix); /* Clear current window matrices. */ xassert (WINDOWP (FRAME_ROOT_WINDOW (f))); clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 0); } /* Clear out all display lines of F for a coming redisplay. */ void clear_desired_matrices (f) register struct frame *f; { if (f->desired_matrix) clear_glyph_matrix (f->desired_matrix); if (WINDOWP (f->menu_bar_window)) clear_glyph_matrix (XWINDOW (f->menu_bar_window)->desired_matrix); if (WINDOWP (f->tool_bar_window)) clear_glyph_matrix (XWINDOW (f->tool_bar_window)->desired_matrix); /* Do it for window matrices. */ xassert (WINDOWP (FRAME_ROOT_WINDOW (f))); clear_window_matrices (XWINDOW (FRAME_ROOT_WINDOW (f)), 1); } /* Clear matrices in window tree rooted in W. If DESIRED_P is non-zero clear desired matrices, otherwise clear current matrices. */ static void clear_window_matrices (w, desired_p) struct window *w; int desired_p; { while (w) { if (!NILP (w->hchild)) { xassert (WINDOWP (w->hchild)); clear_window_matrices (XWINDOW (w->hchild), desired_p); } else if (!NILP (w->vchild)) { xassert (WINDOWP (w->vchild)); clear_window_matrices (XWINDOW (w->vchild), desired_p); } else { if (desired_p) clear_glyph_matrix (w->desired_matrix); else { clear_glyph_matrix (w->current_matrix); w->window_end_valid = Qnil; } } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /*********************************************************************** Glyph Rows See dispextern.h for an overall explanation of glyph rows. ***********************************************************************/ /* Clear glyph row ROW. Do it in a way that makes it robust against changes in the glyph_row structure, i.e. addition or removal of structure members. */ static struct glyph_row null_row; void clear_glyph_row (row) struct glyph_row *row; { struct glyph *p[1 + LAST_AREA]; /* Save pointers. */ p[LEFT_MARGIN_AREA] = row->glyphs[LEFT_MARGIN_AREA]; p[TEXT_AREA] = row->glyphs[TEXT_AREA]; p[RIGHT_MARGIN_AREA] = row->glyphs[RIGHT_MARGIN_AREA]; p[LAST_AREA] = row->glyphs[LAST_AREA]; /* Clear. */ *row = null_row; /* Restore pointers. */ row->glyphs[LEFT_MARGIN_AREA] = p[LEFT_MARGIN_AREA]; row->glyphs[TEXT_AREA] = p[TEXT_AREA]; row->glyphs[RIGHT_MARGIN_AREA] = p[RIGHT_MARGIN_AREA]; row->glyphs[LAST_AREA] = p[LAST_AREA]; #if 0 /* At some point, some bit-fields of struct glyph were not set, which made glyphs unequal when compared with GLYPH_EQUAL_P. Redisplay outputs such glyphs, and flickering effects were the result. This also depended on the contents of memory returned by xmalloc. If flickering happens again, activate the code below. If the flickering is gone with that, chances are that the flickering has the same reason as here. */ bzero (p[0], (char *) p[LAST_AREA] - (char *) p[0]); #endif } /* Make ROW an empty, enabled row of canonical character height, in window W starting at y-position Y. */ void blank_row (w, row, y) struct window *w; struct glyph_row *row; int y; { int min_y, max_y; min_y = WINDOW_HEADER_LINE_HEIGHT (w); max_y = WINDOW_BOX_HEIGHT_NO_MODE_LINE (w); clear_glyph_row (row); row->y = y; row->ascent = row->phys_ascent = 0; row->height = row->phys_height = FRAME_LINE_HEIGHT (XFRAME (w->frame)); row->visible_height = row->height; if (row->y < min_y) row->visible_height -= min_y - row->y; if (row->y + row->height > max_y) row->visible_height -= row->y + row->height - max_y; row->enabled_p = 1; } /* Increment buffer positions in glyph row ROW. DELTA and DELTA_BYTES are the amounts by which to change positions. Note that the first glyph of the text area of a row can have a buffer position even if the used count of the text area is zero. Such rows display line ends. */ void increment_row_positions (row, delta, delta_bytes) struct glyph_row *row; int delta, delta_bytes; { int area, i; /* Increment start and end positions. */ MATRIX_ROW_START_CHARPOS (row) += delta; MATRIX_ROW_START_BYTEPOS (row) += delta_bytes; MATRIX_ROW_END_CHARPOS (row) += delta; MATRIX_ROW_END_BYTEPOS (row) += delta_bytes; if (!row->enabled_p) return; /* Increment positions in glyphs. */ for (area = 0; area < LAST_AREA; ++area) for (i = 0; i < row->used[area]; ++i) if (BUFFERP (row->glyphs[area][i].object) && row->glyphs[area][i].charpos > 0) row->glyphs[area][i].charpos += delta; /* Capture the case of rows displaying a line end. */ if (row->used[TEXT_AREA] == 0 && MATRIX_ROW_DISPLAYS_TEXT_P (row)) row->glyphs[TEXT_AREA]->charpos += delta; } #if 0 /* Swap glyphs between two glyph rows A and B. This exchanges glyph contents, i.e. glyph structure contents are exchanged between A and B without changing glyph pointers in A and B. */ static void swap_glyphs_in_rows (a, b) struct glyph_row *a, *b; { int area; for (area = 0; area < LAST_AREA; ++area) { /* Number of glyphs to swap. */ int max_used = max (a->used[area], b->used[area]); /* Start of glyphs in area of row A. */ struct glyph *glyph_a = a->glyphs[area]; /* End + 1 of glyphs in area of row A. */ struct glyph *glyph_a_end = a->glyphs[max_used]; /* Start of glyphs in area of row B. */ struct glyph *glyph_b = b->glyphs[area]; while (glyph_a < glyph_a_end) { /* Non-ISO HP/UX compiler doesn't like auto struct initialization. */ struct glyph temp; temp = *glyph_a; *glyph_a = *glyph_b; *glyph_b = temp; ++glyph_a; ++glyph_b; } } } #endif /* 0 */ /* Exchange pointers to glyph memory between glyph rows A and B. */ static INLINE void swap_glyph_pointers (a, b) struct glyph_row *a, *b; { int i; for (i = 0; i < LAST_AREA + 1; ++i) { struct glyph *temp = a->glyphs[i]; a->glyphs[i] = b->glyphs[i]; b->glyphs[i] = temp; } } /* Copy glyph row structure FROM to glyph row structure TO, except that glyph pointers in the structures are left unchanged. */ INLINE void copy_row_except_pointers (to, from) struct glyph_row *to, *from; { struct glyph *pointers[1 + LAST_AREA]; /* Save glyph pointers of TO. */ bcopy (to->glyphs, pointers, sizeof to->glyphs); /* Do a structure assignment. */ *to = *from; /* Restore original pointers of TO. */ bcopy (pointers, to->glyphs, sizeof to->glyphs); } /* Copy contents of glyph row FROM to glyph row TO. Glyph pointers in TO and FROM are left unchanged. Glyph contents are copied from the glyph memory of FROM to the glyph memory of TO. Increment buffer positions in row TO by DELTA/ DELTA_BYTES. */ void copy_glyph_row_contents (to, from, delta, delta_bytes) struct glyph_row *to, *from; int delta, delta_bytes; { int area; /* This is like a structure assignment TO = FROM, except that glyph pointers in the rows are left unchanged. */ copy_row_except_pointers (to, from); /* Copy glyphs from FROM to TO. */ for (area = 0; area < LAST_AREA; ++area) if (from->used[area]) bcopy (from->glyphs[area], to->glyphs[area], from->used[area] * sizeof (struct glyph)); /* Increment buffer positions in TO by DELTA. */ increment_row_positions (to, delta, delta_bytes); } /* Assign glyph row FROM to glyph row TO. This works like a structure assignment TO = FROM, except that glyph pointers are not copied but exchanged between TO and FROM. Pointers must be exchanged to avoid a memory leak. */ static INLINE void assign_row (to, from) struct glyph_row *to, *from; { swap_glyph_pointers (to, from); copy_row_except_pointers (to, from); } /* Test whether the glyph memory of the glyph row WINDOW_ROW, which is a row in a window matrix, is a slice of the glyph memory of the glyph row FRAME_ROW which is a row in a frame glyph matrix. Value is non-zero if the glyph memory of WINDOW_ROW is part of the glyph memory of FRAME_ROW. */ #if GLYPH_DEBUG static int glyph_row_slice_p (window_row, frame_row) struct glyph_row *window_row, *frame_row; { struct glyph *window_glyph_start = window_row->glyphs[0]; struct glyph *frame_glyph_start = frame_row->glyphs[0]; struct glyph *frame_glyph_end = frame_row->glyphs[LAST_AREA]; return (frame_glyph_start <= window_glyph_start && window_glyph_start < frame_glyph_end); } #endif /* GLYPH_DEBUG */ #if 0 /* Find the row in the window glyph matrix WINDOW_MATRIX being a slice of ROW in the frame matrix FRAME_MATRIX. Value is null if no row in WINDOW_MATRIX is found satisfying the condition. */ static struct glyph_row * find_glyph_row_slice (window_matrix, frame_matrix, row) struct glyph_matrix *window_matrix, *frame_matrix; int row; { int i; xassert (row >= 0 && row < frame_matrix->nrows); for (i = 0; i < window_matrix->nrows; ++i) if (glyph_row_slice_p (window_matrix->rows + i, frame_matrix->rows + row)) break; return i < window_matrix->nrows ? window_matrix->rows + i : 0; } #endif /* 0 */ /* Prepare ROW for display. Desired rows are cleared lazily, i.e. they are only marked as to be cleared by setting their enabled_p flag to zero. When a row is to be displayed, a prior call to this function really clears it. */ void prepare_desired_row (row) struct glyph_row *row; { if (!row->enabled_p) { clear_glyph_row (row); row->enabled_p = 1; } } /* Return a hash code for glyph row ROW. */ int line_hash_code (row) struct glyph_row *row; { int hash = 0; if (row->enabled_p) { struct glyph *glyph = row->glyphs[TEXT_AREA]; struct glyph *end = glyph + row->used[TEXT_AREA]; while (glyph < end) { int c = glyph->u.ch; int face_id = glyph->face_id; if (must_write_spaces) c -= SPACEGLYPH; hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + c; hash = (((hash << 4) + (hash >> 24)) & 0x0fffffff) + face_id; ++glyph; } if (hash == 0) hash = 1; } return hash; } /* Return the cost of drawing line VPOS in MATRIX. The cost equals the number of characters in the line. If must_write_spaces is zero, leading and trailing spaces are ignored. */ static unsigned int line_draw_cost (matrix, vpos) struct glyph_matrix *matrix; int vpos; { struct glyph_row *row = matrix->rows + vpos; struct glyph *beg = row->glyphs[TEXT_AREA]; struct glyph *end = beg + row->used[TEXT_AREA]; int len; Lisp_Object *glyph_table_base = GLYPH_TABLE_BASE; int glyph_table_len = GLYPH_TABLE_LENGTH; /* Ignore trailing and leading spaces if we can. */ if (!must_write_spaces) { /* Skip from the end over trailing spaces. */ while (end > beg && CHAR_GLYPH_SPACE_P (*(end - 1))) --end; /* All blank line. */ if (end == beg) return 0; /* Skip over leading spaces. */ while (CHAR_GLYPH_SPACE_P (*beg)) ++beg; } /* If we don't have a glyph-table, each glyph is one character, so return the number of glyphs. */ if (glyph_table_base == 0) len = end - beg; else { /* Otherwise, scan the glyphs and accumulate their total length in LEN. */ len = 0; while (beg < end) { GLYPH g = GLYPH_FROM_CHAR_GLYPH (*beg); if (g < 0 || GLYPH_SIMPLE_P (glyph_table_base, glyph_table_len, g)) len += 1; else len += GLYPH_LENGTH (glyph_table_base, g); ++beg; } } return len; } /* Test two glyph rows A and B for equality. Value is non-zero if A and B have equal contents. W is the window to which the glyphs rows A and B belong. It is needed here to test for partial row visibility. MOUSE_FACE_P non-zero means compare the mouse_face_p flags of A and B, too. */ static INLINE int row_equal_p (w, a, b, mouse_face_p) struct window *w; struct glyph_row *a, *b; int mouse_face_p; { if (a == b) return 1; else if (a->hash != b->hash) return 0; else { struct glyph *a_glyph, *b_glyph, *a_end; int area; if (mouse_face_p && a->mouse_face_p != b->mouse_face_p) return 0; /* Compare glyphs. */ for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area) { if (a->used[area] != b->used[area]) return 0; a_glyph = a->glyphs[area]; a_end = a_glyph + a->used[area]; b_glyph = b->glyphs[area]; while (a_glyph < a_end && GLYPH_EQUAL_P (a_glyph, b_glyph)) ++a_glyph, ++b_glyph; if (a_glyph != a_end) return 0; } if (a->fill_line_p != b->fill_line_p || a->cursor_in_fringe_p != b->cursor_in_fringe_p || a->left_fringe_bitmap != b->left_fringe_bitmap || a->left_fringe_face_id != b->left_fringe_face_id || a->right_fringe_bitmap != b->right_fringe_bitmap || a->right_fringe_face_id != b->right_fringe_face_id || a->overlay_arrow_bitmap != b->overlay_arrow_bitmap || a->exact_window_width_line_p != b->exact_window_width_line_p || a->overlapped_p != b->overlapped_p || (MATRIX_ROW_CONTINUATION_LINE_P (a) != MATRIX_ROW_CONTINUATION_LINE_P (b)) /* Different partially visible characters on left margin. */ || a->x != b->x /* Different height. */ || a->ascent != b->ascent || a->phys_ascent != b->phys_ascent || a->phys_height != b->phys_height || a->visible_height != b->visible_height) return 0; } return 1; } /*********************************************************************** Glyph Pool See dispextern.h for an overall explanation of glyph pools. ***********************************************************************/ /* Allocate a glyph_pool structure. The structure returned is initialized with zeros. The global variable glyph_pool_count is incremented for each pool allocated. */ static struct glyph_pool * new_glyph_pool () { struct glyph_pool *result; /* Allocate a new glyph_pool and clear it. */ result = (struct glyph_pool *) xmalloc (sizeof *result); bzero (result, sizeof *result); /* For memory leak and double deletion checking. */ ++glyph_pool_count; return result; } /* Free a glyph_pool structure POOL. The function may be called with a null POOL pointer. The global variable glyph_pool_count is decremented with every pool structure freed. If this count gets negative, more structures were freed than allocated, i.e. one structure must have been freed more than once or a bogus pointer was passed to free_glyph_pool. */ static void free_glyph_pool (pool) struct glyph_pool *pool; { if (pool) { /* More freed than allocated? */ --glyph_pool_count; xassert (glyph_pool_count >= 0); xfree (pool->glyphs); xfree (pool); } } /* Enlarge a glyph pool POOL. MATRIX_DIM gives the number of rows and columns we need. This function never shrinks a pool. The only case in which this would make sense, would be when a frame's size is changed from a large value to a smaller one. But, if someone does it once, we can expect that he will do it again. Value is non-zero if the pool changed in a way which makes re-adjusting window glyph matrices necessary. */ static int realloc_glyph_pool (pool, matrix_dim) struct glyph_pool *pool; struct dim matrix_dim; { int needed; int changed_p; changed_p = (pool->glyphs == 0 || matrix_dim.height != pool->nrows || matrix_dim.width != pool->ncolumns); /* Enlarge the glyph pool. */ needed = matrix_dim.width * matrix_dim.height; if (needed > pool->nglyphs) { int size = needed * sizeof (struct glyph); if (pool->glyphs) pool->glyphs = (struct glyph *) xrealloc (pool->glyphs, size); else { pool->glyphs = (struct glyph *) xmalloc (size); bzero (pool->glyphs, size); } pool->nglyphs = needed; } /* Remember the number of rows and columns because (a) we use them to do sanity checks, and (b) the number of columns determines where rows in the frame matrix start---this must be available to determine pointers to rows of window sub-matrices. */ pool->nrows = matrix_dim.height; pool->ncolumns = matrix_dim.width; return changed_p; } /*********************************************************************** Debug Code ***********************************************************************/ #if GLYPH_DEBUG /* Flush standard output. This is sometimes useful to call from the debugger. */ void flush_stdout () { fflush (stdout); } /* Check that no glyph pointers have been lost in MATRIX. If a pointer has been lost, e.g. by using a structure assignment between rows, at least one pointer must occur more than once in the rows of MATRIX. */ void check_matrix_pointer_lossage (matrix) struct glyph_matrix *matrix; { int i, j; for (i = 0; i < matrix->nrows; ++i) for (j = 0; j < matrix->nrows; ++j) xassert (i == j || (matrix->rows[i].glyphs[TEXT_AREA] != matrix->rows[j].glyphs[TEXT_AREA])); } /* Get a pointer to glyph row ROW in MATRIX, with bounds checks. */ struct glyph_row * matrix_row (matrix, row) struct glyph_matrix *matrix; int row; { xassert (matrix && matrix->rows); xassert (row >= 0 && row < matrix->nrows); /* That's really too slow for normal testing because this function is called almost everywhere. Although---it's still astonishingly fast, so it is valuable to have for debugging purposes. */ #if 0 check_matrix_pointer_lossage (matrix); #endif return matrix->rows + row; } #if 0 /* This function makes invalid assumptions when text is partially invisible. But it might come handy for debugging nevertheless. */ /* Check invariants that must hold for an up to date current matrix of window W. */ static void check_matrix_invariants (w) struct window *w; { struct glyph_matrix *matrix = w->current_matrix; int yb = window_text_bottom_y (w); struct glyph_row *row = matrix->rows; struct glyph_row *last_text_row = NULL; struct buffer *saved = current_buffer; struct buffer *buffer = XBUFFER (w->buffer); int c; /* This can sometimes happen for a fresh window. */ if (matrix->nrows < 2) return; set_buffer_temp (buffer); /* Note: last row is always reserved for the mode line. */ while (MATRIX_ROW_DISPLAYS_TEXT_P (row) && MATRIX_ROW_BOTTOM_Y (row) < yb) { struct glyph_row *next = row + 1; if (MATRIX_ROW_DISPLAYS_TEXT_P (row)) last_text_row = row; /* Check that character and byte positions are in sync. */ xassert (MATRIX_ROW_START_BYTEPOS (row) == CHAR_TO_BYTE (MATRIX_ROW_START_CHARPOS (row))); /* CHAR_TO_BYTE aborts when invoked for a position > Z. We can have such a position temporarily in case of a minibuffer displaying something like `[Sole completion]' at its end. */ if (MATRIX_ROW_END_CHARPOS (row) < BUF_ZV (current_buffer)) xassert (MATRIX_ROW_END_BYTEPOS (row) == CHAR_TO_BYTE (MATRIX_ROW_END_CHARPOS (row))); /* Check that end position of `row' is equal to start position of next row. */ if (next->enabled_p && MATRIX_ROW_DISPLAYS_TEXT_P (next)) { xassert (MATRIX_ROW_END_CHARPOS (row) == MATRIX_ROW_START_CHARPOS (next)); xassert (MATRIX_ROW_END_BYTEPOS (row) == MATRIX_ROW_START_BYTEPOS (next)); } row = next; } xassert (w->current_matrix->nrows == w->desired_matrix->nrows); xassert (w->desired_matrix->rows != NULL); set_buffer_temp (saved); } #endif /* 0 */ #endif /* GLYPH_DEBUG != 0 */ /********************************************************************** Allocating/ Adjusting Glyph Matrices **********************************************************************/ /* Allocate glyph matrices over a window tree for a frame-based redisplay X and Y are column/row within the frame glyph matrix where sub-matrices for the window tree rooted at WINDOW must be allocated. CH_DIM contains the dimensions of the smallest character that could be used during display. DIM_ONLY_P non-zero means that the caller of this function is only interested in the result matrix dimension, and matrix adjustments should not be performed. The function returns the total width/height of the sub-matrices of the window tree. If called on a frame root window, the computation will take the mini-buffer window into account. *WINDOW_CHANGE_FLAGS is set to a bit mask with bits NEW_LEAF_MATRIX set if any window in the tree did not have a glyph matrices yet, and CHANGED_LEAF_MATRIX set if the dimension or location of a matrix of any window in the tree will be changed or have been changed (see DIM_ONLY_P) *WINDOW_CHANGE_FLAGS must be initialized by the caller of this function. Windows are arranged into chains of windows on the same level through the next fields of window structures. Such a level can be either a sequence of horizontally adjacent windows from left to right, or a sequence of vertically adjacent windows from top to bottom. Each window in a horizontal sequence can be either a leaf window or a vertical sequence; a window in a vertical sequence can be either a leaf or a horizontal sequence. All windows in a horizontal sequence have the same height, and all windows in a vertical sequence have the same width. This function uses, for historical reasons, a more general algorithm to determine glyph matrix dimensions that would be necessary. The matrix height of a horizontal sequence is determined by the maximum height of any matrix in the sequence. The matrix width of a horizontal sequence is computed by adding up matrix widths of windows in the sequence. |<------- result width ------->| +---------+----------+---------+ --- | | | | | | | | | +---------+ | | result height | +---------+ | | | +----------+ --- The matrix width of a vertical sequence is the maximum matrix width of any window in the sequence. Its height is computed by adding up matrix heights of windows in the sequence. |<---- result width -->| +---------+ --- | | | | | | +---------+--+ | | | | | | result height | | +------------+---------+ | | | | | | | +------------+---------+ --- */ /* Bit indicating that a new matrix will be allocated or has been allocated. */ #define NEW_LEAF_MATRIX (1 << 0) /* Bit indicating that a matrix will or has changed its location or size. */ #define CHANGED_LEAF_MATRIX (1 << 1) static struct dim allocate_matrices_for_frame_redisplay (window, x, y, dim_only_p, window_change_flags) Lisp_Object window; int x, y; int dim_only_p; int *window_change_flags; { struct frame *f = XFRAME (WINDOW_FRAME (XWINDOW (window))); int x0 = x, y0 = y; int wmax = 0, hmax = 0; struct dim total; struct dim dim; struct window *w; int in_horz_combination_p; /* What combination is WINDOW part of? Compute this once since the result is the same for all windows in the `next' chain. The special case of a root window (parent equal to nil) is treated like a vertical combination because a root window's `next' points to the mini-buffer window, if any, which is arranged vertically below other windows. */ in_horz_combination_p = (!NILP (XWINDOW (window)->parent) && !NILP (XWINDOW (XWINDOW (window)->parent)->hchild)); /* For WINDOW and all windows on the same level. */ do { w = XWINDOW (window); /* Get the dimension of the window sub-matrix for W, depending on whether this is a combination or a leaf window. */ if (!NILP (w->hchild)) dim = allocate_matrices_for_frame_redisplay (w->hchild, x, y, dim_only_p, window_change_flags); else if (!NILP (w->vchild)) dim = allocate_matrices_for_frame_redisplay (w->vchild, x, y, dim_only_p, window_change_flags); else { /* If not already done, allocate sub-matrix structures. */ if (w->desired_matrix == NULL) { w->desired_matrix = new_glyph_matrix (f->desired_pool); w->current_matrix = new_glyph_matrix (f->current_pool); *window_change_flags |= NEW_LEAF_MATRIX; } /* Width and height MUST be chosen so that there are no holes in the frame matrix. */ dim.width = required_matrix_width (w); dim.height = required_matrix_height (w); /* Will matrix be re-allocated? */ if (x != w->desired_matrix->matrix_x || y != w->desired_matrix->matrix_y || dim.width != w->desired_matrix->matrix_w || dim.height != w->desired_matrix->matrix_h || (margin_glyphs_to_reserve (w, dim.width, w->left_margin_cols) != w->desired_matrix->left_margin_glyphs) || (margin_glyphs_to_reserve (w, dim.width, w->right_margin_cols) != w->desired_matrix->right_margin_glyphs)) *window_change_flags |= CHANGED_LEAF_MATRIX; /* Actually change matrices, if allowed. Do not consider CHANGED_LEAF_MATRIX computed above here because the pool may have been changed which we don't now here. We trust that we only will be called with DIM_ONLY_P != 0 when necessary. */ if (!dim_only_p) { adjust_glyph_matrix (w, w->desired_matrix, x, y, dim); adjust_glyph_matrix (w, w->current_matrix, x, y, dim); } } /* If we are part of a horizontal combination, advance x for windows to the right of W; otherwise advance y for windows below W. */ if (in_horz_combination_p) x += dim.width; else y += dim.height; /* Remember maximum glyph matrix dimensions. */ wmax = max (wmax, dim.width); hmax = max (hmax, dim.height); /* Next window on same level. */ window = w->next; } while (!NILP (window)); /* Set `total' to the total glyph matrix dimension of this window level. In a vertical combination, the width is the width of the widest window; the height is the y we finally reached, corrected by the y we started with. In a horizontal combination, the total height is the height of the tallest window, and the width is the x we finally reached, corrected by the x we started with. */ if (in_horz_combination_p) { total.width = x - x0; total.height = hmax; } else { total.width = wmax; total.height = y - y0; } return total; } /* Return the required height of glyph matrices for window W. */ int required_matrix_height (w) struct window *w; { #ifdef HAVE_WINDOW_SYSTEM struct frame *f = XFRAME (w->frame); if (FRAME_WINDOW_P (f)) { int ch_height = FRAME_SMALLEST_FONT_HEIGHT (f); int window_pixel_height = window_box_height (w) + abs (w->vscroll); return (((window_pixel_height + ch_height - 1) / ch_height) * w->nrows_scale_factor /* One partially visible line at the top and bottom of the window. */ + 2 /* 2 for header and mode line. */ + 2); } #endif /* HAVE_WINDOW_SYSTEM */ return WINDOW_TOTAL_LINES (w); } /* Return the required width of glyph matrices for window W. */ int required_matrix_width (w) struct window *w; { #ifdef HAVE_WINDOW_SYSTEM struct frame *f = XFRAME (w->frame); if (FRAME_WINDOW_P (f)) { int ch_width = FRAME_SMALLEST_CHAR_WIDTH (f); int window_pixel_width = WINDOW_TOTAL_WIDTH (w); /* Compute number of glyphs needed in a glyph row. */ return (((window_pixel_width + ch_width - 1) / ch_width) * w->ncols_scale_factor /* 2 partially visible columns in the text area. */ + 2 /* One partially visible column at the right edge of each marginal area. */ + 1 + 1); } #endif /* HAVE_WINDOW_SYSTEM */ return XINT (w->total_cols); } /* Allocate window matrices for window-based redisplay. W is the window whose matrices must be allocated/reallocated. CH_DIM is the size of the smallest character that could potentially be used on W. */ static void allocate_matrices_for_window_redisplay (w) struct window *w; { while (w) { if (!NILP (w->vchild)) allocate_matrices_for_window_redisplay (XWINDOW (w->vchild)); else if (!NILP (w->hchild)) allocate_matrices_for_window_redisplay (XWINDOW (w->hchild)); else { /* W is a leaf window. */ struct dim dim; /* If matrices are not yet allocated, allocate them now. */ if (w->desired_matrix == NULL) { w->desired_matrix = new_glyph_matrix (NULL); w->current_matrix = new_glyph_matrix (NULL); } dim.width = required_matrix_width (w); dim.height = required_matrix_height (w); adjust_glyph_matrix (w, w->desired_matrix, 0, 0, dim); adjust_glyph_matrix (w, w->current_matrix, 0, 0, dim); } w = NILP (w->next) ? NULL : XWINDOW (w->next); } } /* Re-allocate/ re-compute glyph matrices on frame F. If F is null, do it for all frames; otherwise do it just for the given frame. This function must be called when a new frame is created, its size changes, or its window configuration changes. */ void adjust_glyphs (f) struct frame *f; { /* Block input so that expose events and other events that access glyph matrices are not processed while we are changing them. */ BLOCK_INPUT; if (f) adjust_frame_glyphs (f); else { Lisp_Object tail, lisp_frame; FOR_EACH_FRAME (tail, lisp_frame) adjust_frame_glyphs (XFRAME (lisp_frame)); } UNBLOCK_INPUT; } /* Adjust frame glyphs when Emacs is initialized. To be called from init_display. We need a glyph matrix because redraw will happen soon. Unfortunately, window sizes on selected_frame are not yet set to meaningful values. I believe we can assume that there are only two windows on the frame---the mini-buffer and the root window. Frame height and width seem to be correct so far. So, set the sizes of windows to estimated values. */ static void adjust_frame_glyphs_initially () { struct frame *sf = SELECTED_FRAME (); struct window *root = XWINDOW (sf->root_window); struct window *mini = XWINDOW (root->next); int frame_lines = FRAME_LINES (sf); int frame_cols = FRAME_COLS (sf); int top_margin = FRAME_TOP_MARGIN (sf); /* Do it for the root window. */ XSETFASTINT (root->top_line, top_margin); XSETFASTINT (root->total_cols, frame_cols); set_window_height (sf->root_window, frame_lines - 1 - top_margin, 0); /* Do it for the mini-buffer window. */ XSETFASTINT (mini->top_line, frame_lines - 1); XSETFASTINT (mini->total_cols, frame_cols); set_window_height (root->next, 1, 0); adjust_frame_glyphs (sf); glyphs_initialized_initially_p = 1; } /* Allocate/reallocate glyph matrices of a single frame F. */ static void adjust_frame_glyphs (f) struct frame *f; { if (FRAME_WINDOW_P (f)) adjust_frame_glyphs_for_window_redisplay (f); else adjust_frame_glyphs_for_frame_redisplay (f); /* Don't forget the message buffer and the buffer for decode_mode_spec. */ adjust_frame_message_buffer (f); adjust_decode_mode_spec_buffer (f); f->glyphs_initialized_p = 1; } /* In the window tree with root W, build current matrices of leaf windows from the frame's current matrix. */ static void fake_current_matrices (window) Lisp_Object window; { struct window *w; for (; !NILP (window); window = w->next) { w = XWINDOW (window); if (!NILP (w->hchild)) fake_current_matrices (w->hchild); else if (!NILP (w->vchild)) fake_current_matrices (w->vchild); else { int i; struct frame *f = XFRAME (w->frame); struct glyph_matrix *m = w->current_matrix; struct glyph_matrix *fm = f->current_matrix; xassert (m->matrix_h == WINDOW_TOTAL_LINES (w)); xassert (m->matrix_w == WINDOW_TOTAL_COLS (w)); for (i = 0; i < m->matrix_h; ++i) { struct glyph_row *r = m->rows + i; struct glyph_row *fr = fm->rows + i + WINDOW_TOP_EDGE_LINE (w); xassert (r->glyphs[TEXT_AREA] >= fr->glyphs[TEXT_AREA] && r->glyphs[LAST_AREA] <= fr->glyphs[LAST_AREA]); r->enabled_p = fr->enabled_p; if (r->enabled_p) { r->used[LEFT_MARGIN_AREA] = m->left_margin_glyphs; r->used[RIGHT_MARGIN_AREA] = m->right_margin_glyphs; r->used[TEXT_AREA] = (m->matrix_w - r->used[LEFT_MARGIN_AREA] - r->used[RIGHT_MARGIN_AREA]); r->mode_line_p = 0; } } } } } /* Save away the contents of frame F's current frame matrix. Value is a glyph matrix holding the contents of F's current frame matrix. */ static struct glyph_matrix * save_current_matrix (f) struct frame *f; { int i; struct glyph_matrix *saved; saved = (struct glyph_matrix *) xmalloc (sizeof *saved); bzero (saved, sizeof *saved); saved->nrows = f->current_matrix->nrows; saved->rows = (struct glyph_row *) xmalloc (saved->nrows * sizeof *saved->rows); bzero (saved->rows, saved->nrows * sizeof *saved->rows); for (i = 0; i < saved->nrows; ++i) { struct glyph_row *from = f->current_matrix->rows + i; struct glyph_row *to = saved->rows + i; size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph); to->glyphs[TEXT_AREA] = (struct glyph *) xmalloc (nbytes); bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes); to->used[TEXT_AREA] = from->used[TEXT_AREA]; } return saved; } /* Restore the contents of frame F's current frame matrix from SAVED, and free memory associated with SAVED. */ static void restore_current_matrix (f, saved) struct frame *f; struct glyph_matrix *saved; { int i; for (i = 0; i < saved->nrows; ++i) { struct glyph_row *from = saved->rows + i; struct glyph_row *to = f->current_matrix->rows + i; size_t nbytes = from->used[TEXT_AREA] * sizeof (struct glyph); bcopy (from->glyphs[TEXT_AREA], to->glyphs[TEXT_AREA], nbytes); to->used[TEXT_AREA] = from->used[TEXT_AREA]; xfree (from->glyphs[TEXT_AREA]); } xfree (saved->rows); xfree (saved); } /* Allocate/reallocate glyph matrices of a single frame F for frame-based redisplay. */ static void adjust_frame_glyphs_for_frame_redisplay (f) struct frame *f; { struct dim ch_dim; struct dim matrix_dim; int pool_changed_p; int window_change_flags; int top_window_y; if (!FRAME_LIVE_P (f)) return; /* Determine the smallest character in any font for F. On console windows, all characters have dimension (1, 1). */ ch_dim.width = ch_dim.height = 1; top_window_y = FRAME_TOP_MARGIN (f); /* Allocate glyph pool structures if not already done. */ if (f->desired_pool == NULL) { f->desired_pool = new_glyph_pool (); f->current_pool = new_glyph_pool (); } /* Allocate frames matrix structures if needed. */ if (f->desired_matrix == NULL) { f->desired_matrix = new_glyph_matrix (f->desired_pool); f->current_matrix = new_glyph_matrix (f->current_pool); } /* Compute window glyph matrices. (This takes the mini-buffer window into account). The result is the size of the frame glyph matrix needed. The variable window_change_flags is set to a bit mask indicating whether new matrices will be allocated or existing matrices change their size or location within the frame matrix. */ window_change_flags = 0; matrix_dim = allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f), 0, top_window_y, 1, &window_change_flags); /* Add in menu bar lines, if any. */ matrix_dim.height += top_window_y; /* Enlarge pools as necessary. */ pool_changed_p = realloc_glyph_pool (f->desired_pool, matrix_dim); realloc_glyph_pool (f->current_pool, matrix_dim); /* Set up glyph pointers within window matrices. Do this only if absolutely necessary since it requires a frame redraw. */ if (pool_changed_p || window_change_flags) { /* Do it for window matrices. */ allocate_matrices_for_frame_redisplay (FRAME_ROOT_WINDOW (f), 0, top_window_y, 0, &window_change_flags); /* Size of frame matrices must equal size of frame. Note that we are called for X frames with window widths NOT equal to the frame width (from CHANGE_FRAME_SIZE_1). */ xassert (matrix_dim.width == FRAME_COLS (f) && matrix_dim.height == FRAME_LINES (f)); /* Pointers to glyph memory in glyph rows are exchanged during the update phase of redisplay, which means in general that a frame's current matrix consists of pointers into both the desired and current glyph pool of the frame. Adjusting a matrix sets the frame matrix up so that pointers are all into the same pool. If we want to preserve glyph contents of the current matrix over a call to adjust_glyph_matrix, we must make a copy of the current glyphs, and restore the current matrix' contents from that copy. */ if (display_completed && !FRAME_GARBAGED_P (f) && matrix_dim.width == f->current_matrix->matrix_w && matrix_dim.height == f->current_matrix->matrix_h) { struct glyph_matrix *copy = save_current_matrix (f); adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim); adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim); restore_current_matrix (f, copy); fake_current_matrices (FRAME_ROOT_WINDOW (f)); } else { adjust_glyph_matrix (NULL, f->desired_matrix, 0, 0, matrix_dim); adjust_glyph_matrix (NULL, f->current_matrix, 0, 0, matrix_dim); SET_FRAME_GARBAGED (f); } } } /* Allocate/reallocate glyph matrices of a single frame F for window-based redisplay. */ static void adjust_frame_glyphs_for_window_redisplay (f) struct frame *f; { struct dim ch_dim; struct window *w; xassert (FRAME_WINDOW_P (f) && FRAME_LIVE_P (f)); /* Get minimum sizes. */ #ifdef HAVE_WINDOW_SYSTEM ch_dim.width = FRAME_SMALLEST_CHAR_WIDTH (f); ch_dim.height = FRAME_SMALLEST_FONT_HEIGHT (f); #else ch_dim.width = ch_dim.height = 1; #endif /* Allocate/reallocate window matrices. */ allocate_matrices_for_window_redisplay (XWINDOW (FRAME_ROOT_WINDOW (f))); /* Allocate/ reallocate matrices of the dummy window used to display the menu bar under X when no X toolkit support is available. */ #if ! defined (USE_X_TOOLKIT) && ! defined (USE_GTK) { /* Allocate a dummy window if not already done. */ if (NILP (f->menu_bar_window)) { f->menu_bar_window = make_window (); w = XWINDOW (f->menu_bar_window); XSETFRAME (w->frame, f); w->pseudo_window_p = 1; } else w = XWINDOW (f->menu_bar_window); /* Set window dimensions to frame dimensions and allocate or adjust glyph matrices of W. */ XSETFASTINT (w->top_line, 0); XSETFASTINT (w->left_col, 0); XSETFASTINT (w->total_lines, FRAME_MENU_BAR_LINES (f)); XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f)); allocate_matrices_for_window_redisplay (w); } #endif /* not USE_X_TOOLKIT */ #ifndef USE_GTK /* Allocate/ reallocate matrices of the tool bar window. If we don't have a tool bar window yet, make one. */ if (NILP (f->tool_bar_window)) { f->tool_bar_window = make_window (); w = XWINDOW (f->tool_bar_window); XSETFRAME (w->frame, f); w->pseudo_window_p = 1; } else w = XWINDOW (f->tool_bar_window); XSETFASTINT (w->top_line, FRAME_MENU_BAR_LINES (f)); XSETFASTINT (w->left_col, 0); XSETFASTINT (w->total_lines, FRAME_TOOL_BAR_LINES (f)); XSETFASTINT (w->total_cols, FRAME_TOTAL_COLS (f)); allocate_matrices_for_window_redisplay (w); #endif } /* Adjust/ allocate message buffer of frame F. Note that the message buffer is never freed. Since I could not find a free in 19.34, I assume that freeing it would be problematic in some way and don't do it either. (Implementation note: It should be checked if we can free it eventually without causing trouble). */ static void adjust_frame_message_buffer (f) struct frame *f; { int size = FRAME_MESSAGE_BUF_SIZE (f) + 1; if (FRAME_MESSAGE_BUF (f)) { char *buffer = FRAME_MESSAGE_BUF (f); char *new_buffer = (char *) xrealloc (buffer, size); FRAME_MESSAGE_BUF (f) = new_buffer; } else FRAME_MESSAGE_BUF (f) = (char *) xmalloc (size); } /* Re-allocate buffer for decode_mode_spec on frame F. */ static void adjust_decode_mode_spec_buffer (f) struct frame *f; { f->decode_mode_spec_buffer = (char *) xrealloc (f->decode_mode_spec_buffer, FRAME_MESSAGE_BUF_SIZE (f) + 1); } /********************************************************************** Freeing Glyph Matrices **********************************************************************/ /* Free glyph memory for a frame F. F may be null. This function can be called for the same frame more than once. The root window of F may be nil when this function is called. This is the case when the function is called when F is destroyed. */ void free_glyphs (f) struct frame *f; { if (f && f->glyphs_initialized_p) { /* Block interrupt input so that we don't get surprised by an X event while we're in an inconsistent state. */ BLOCK_INPUT; f->glyphs_initialized_p = 0; /* Release window sub-matrices. */ if (!NILP (f->root_window)) free_window_matrices (XWINDOW (f->root_window)); /* Free the dummy window for menu bars without X toolkit and its glyph matrices. */ if (!NILP (f->menu_bar_window)) { struct window *w = XWINDOW (f->menu_bar_window); free_glyph_matrix (w->desired_matrix); free_glyph_matrix (w->current_matrix); w->desired_matrix = w->current_matrix = NULL; f->menu_bar_window = Qnil; } /* Free the tool bar window and its glyph matrices. */ if (!NILP (f->tool_bar_window)) { struct window *w = XWINDOW (f->tool_bar_window); free_glyph_matrix (w->desired_matrix); free_glyph_matrix (w->current_matrix); w->desired_matrix = w->current_matrix = NULL; f->tool_bar_window = Qnil; } /* Release frame glyph matrices. Reset fields to zero in case we are called a second time. */ if (f->desired_matrix) { free_glyph_matrix (f->desired_matrix); free_glyph_matrix (f->current_matrix); f->desired_matrix = f->current_matrix = NULL; } /* Release glyph pools. */ if (f->desired_pool) { free_glyph_pool (f->desired_pool); free_glyph_pool (f->current_pool); f->desired_pool = f->current_pool = NULL; } UNBLOCK_INPUT; } } /* Free glyph sub-matrices in the window tree rooted at W. This function may be called with a null pointer, and it may be called on the same tree more than once. */ void free_window_matrices (w) struct window *w; { while (w) { if (!NILP (w->hchild)) free_window_matrices (XWINDOW (w->hchild)); else if (!NILP (w->vchild)) free_window_matrices (XWINDOW (w->vchild)); else { /* This is a leaf window. Free its memory and reset fields to zero in case this function is called a second time for W. */ free_glyph_matrix (w->current_matrix); free_glyph_matrix (w->desired_matrix); w->current_matrix = w->desired_matrix = NULL; } /* Next window on same level. */ w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Check glyph memory leaks. This function is called from shut_down_emacs. Note that frames are not destroyed when Emacs exits. We therefore free all glyph memory for all active frames explicitly and check that nothing is left allocated. */ void check_glyph_memory () { Lisp_Object tail, frame; /* Free glyph memory for all frames. */ FOR_EACH_FRAME (tail, frame) free_glyphs (XFRAME (frame)); /* Check that nothing is left allocated. */ if (glyph_matrix_count) abort (); if (glyph_pool_count) abort (); } /********************************************************************** Building a Frame Matrix **********************************************************************/ /* Most of the redisplay code works on glyph matrices attached to windows. This is a good solution most of the time, but it is not suitable for terminal code. Terminal output functions cannot rely on being able to set an arbitrary terminal window. Instead they must be provided with a view of the whole frame, i.e. the whole screen. We build such a view by constructing a frame matrix from window matrices in this section. Windows that must be updated have their must_be_update_p flag set. For all such windows, their desired matrix is made part of the desired frame matrix. For other windows, their current matrix is made part of the desired frame matrix. +-----------------+----------------+ | desired | desired | | | | +-----------------+----------------+ | current | | | +----------------------------------+ Desired window matrices can be made part of the frame matrix in a cheap way: We exploit the fact that the desired frame matrix and desired window matrices share their glyph memory. This is not possible for current window matrices. Their glyphs are copied to the desired frame matrix. The latter is equivalent to preserve_other_columns in the old redisplay. Used glyphs counters for frame matrix rows are the result of adding up glyph lengths of the window matrices. A line in the frame matrix is enabled, if a corresponding line in a window matrix is enabled. After building the desired frame matrix, it will be passed to terminal code, which will manipulate both the desired and current frame matrix. Changes applied to the frame's current matrix have to be visible in current window matrices afterwards, of course. This problem is solved like this: 1. Window and frame matrices share glyphs. Window matrices are constructed in a way that their glyph contents ARE the glyph contents needed in a frame matrix. Thus, any modification of glyphs done in terminal code will be reflected in window matrices automatically. 2. Exchanges of rows in a frame matrix done by terminal code are intercepted by hook functions so that corresponding row operations on window matrices can be performed. This is necessary because we use pointers to glyphs in glyph row structures. To satisfy the assumption of point 1 above that glyphs are updated implicitly in window matrices when they are manipulated via the frame matrix, window and frame matrix must of course agree where to find the glyphs for their rows. Possible manipulations that must be mirrored are assignments of rows of the desired frame matrix to the current frame matrix and scrolling the current frame matrix. */ /* Build frame F's desired matrix from window matrices. Only windows which have the flag must_be_updated_p set have to be updated. Menu bar lines of a frame are not covered by window matrices, so make sure not to touch them in this function. */ static void build_frame_matrix (f) struct frame *f; { int i; /* F must have a frame matrix when this function is called. */ xassert (!FRAME_WINDOW_P (f)); /* Clear all rows in the frame matrix covered by window matrices. Menu bar lines are not covered by windows. */ for (i = FRAME_TOP_MARGIN (f); i < f->desired_matrix->nrows; ++i) clear_glyph_row (MATRIX_ROW (f->desired_matrix, i)); /* Build the matrix by walking the window tree. */ build_frame_matrix_from_window_tree (f->desired_matrix, XWINDOW (FRAME_ROOT_WINDOW (f))); } /* Walk a window tree, building a frame matrix MATRIX from window matrices. W is the root of a window tree. */ static void build_frame_matrix_from_window_tree (matrix, w) struct glyph_matrix *matrix; struct window *w; { while (w) { if (!NILP (w->hchild)) build_frame_matrix_from_window_tree (matrix, XWINDOW (w->hchild)); else if (!NILP (w->vchild)) build_frame_matrix_from_window_tree (matrix, XWINDOW (w->vchild)); else build_frame_matrix_from_leaf_window (matrix, w); w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Add a window's matrix to a frame matrix. FRAME_MATRIX is the desired frame matrix built. W is a leaf window whose desired or current matrix is to be added to FRAME_MATRIX. W's flag must_be_updated_p determines which matrix it contributes to FRAME_MATRIX. If must_be_updated_p is non-zero, W's desired matrix is added to FRAME_MATRIX, otherwise W's current matrix is added. Adding a desired matrix means setting up used counters and such in frame rows, while adding a current window matrix to FRAME_MATRIX means copying glyphs. The latter case corresponds to preserve_other_columns in the old redisplay. */ static void build_frame_matrix_from_leaf_window (frame_matrix, w) struct glyph_matrix *frame_matrix; struct window *w; { struct glyph_matrix *window_matrix; int window_y, frame_y; /* If non-zero, a glyph to insert at the right border of W. */ GLYPH right_border_glyph = 0; /* Set window_matrix to the matrix we have to add to FRAME_MATRIX. */ if (w->must_be_updated_p) { window_matrix = w->desired_matrix; /* Decide whether we want to add a vertical border glyph. */ if (!WINDOW_RIGHTMOST_P (w)) { struct Lisp_Char_Table *dp = window_display_table (w); right_border_glyph = ((dp && INTEGERP (DISP_BORDER_GLYPH (dp))) ? spec_glyph_lookup_face (w, XINT (DISP_BORDER_GLYPH (dp))) : '|'); if (FAST_GLYPH_FACE (right_border_glyph) <= 0) right_border_glyph = FAST_MAKE_GLYPH (right_border_glyph, VERTICAL_BORDER_FACE_ID); } } else window_matrix = w->current_matrix; /* For all rows in the window matrix and corresponding rows in the frame matrix. */ window_y = 0; frame_y = window_matrix->matrix_y; while (window_y < window_matrix->nrows) { struct glyph_row *frame_row = frame_matrix->rows + frame_y; struct glyph_row *window_row = window_matrix->rows + window_y; int current_row_p = window_matrix == w->current_matrix; /* Fill up the frame row with spaces up to the left margin of the window row. */ fill_up_frame_row_with_spaces (frame_row, window_matrix->matrix_x); /* Fill up areas in the window matrix row with spaces. */ fill_up_glyph_row_with_spaces (window_row); /* If only part of W's desired matrix has been built, and window_row wasn't displayed, use the corresponding current row instead. */ if (window_matrix == w->desired_matrix && !window_row->enabled_p) { window_row = w->current_matrix->rows + window_y; current_row_p = 1; } if (current_row_p) { /* Copy window row to frame row. */ bcopy (window_row->glyphs[0], frame_row->glyphs[TEXT_AREA] + window_matrix->matrix_x, window_matrix->matrix_w * sizeof (struct glyph)); } else { xassert (window_row->enabled_p); /* Only when a desired row has been displayed, we want the corresponding frame row to be updated. */ frame_row->enabled_p = 1; /* Maybe insert a vertical border between horizontally adjacent windows. */ if (right_border_glyph) { struct glyph *border = window_row->glyphs[LAST_AREA] - 1; SET_CHAR_GLYPH_FROM_GLYPH (*border, right_border_glyph); } #if GLYPH_DEBUG /* Window row window_y must be a slice of frame row frame_y. */ xassert (glyph_row_slice_p (window_row, frame_row)); /* If rows are in sync, we don't have to copy glyphs because frame and window share glyphs. */ strcpy (w->current_matrix->method, w->desired_matrix->method); add_window_display_history (w, w->current_matrix->method, 0); #endif } /* Set number of used glyphs in the frame matrix. Since we fill up with spaces, and visit leaf windows from left to right it can be done simply. */ frame_row->used[TEXT_AREA] = window_matrix->matrix_x + window_matrix->matrix_w; /* Next row. */ ++window_y; ++frame_y; } } /* Given a user-specified glyph, possibly including a Lisp-level face ID, return a glyph that has a realized face ID. This is used for glyphs displayed specially and not part of the text; for instance, vertical separators, truncation markers, etc. */ GLYPH spec_glyph_lookup_face (w, glyph) struct window *w; GLYPH glyph; { int lface_id = FAST_GLYPH_FACE (glyph); /* Convert the glyph's specified face to a realized (cache) face. */ if (lface_id > 0) { int face_id = merge_faces (XFRAME (w->frame), Qt, lface_id, DEFAULT_FACE_ID); glyph = FAST_MAKE_GLYPH (FAST_GLYPH_CHAR (glyph), face_id); } return glyph; } /* Add spaces to a glyph row ROW in a window matrix. Each row has the form: +---------+-----------------------------+------------+ | left | text | right | +---------+-----------------------------+------------+ Left and right marginal areas are optional. This function adds spaces to areas so that there are no empty holes between areas. In other words: If the right area is not empty, the text area is filled up with spaces up to the right area. If the text area is not empty, the left area is filled up. To be called for frame-based redisplay, only. */ static void fill_up_glyph_row_with_spaces (row) struct glyph_row *row; { fill_up_glyph_row_area_with_spaces (row, LEFT_MARGIN_AREA); fill_up_glyph_row_area_with_spaces (row, TEXT_AREA); fill_up_glyph_row_area_with_spaces (row, RIGHT_MARGIN_AREA); } /* Fill area AREA of glyph row ROW with spaces. To be called for frame-based redisplay only. */ static void fill_up_glyph_row_area_with_spaces (row, area) struct glyph_row *row; int area; { if (row->glyphs[area] < row->glyphs[area + 1]) { struct glyph *end = row->glyphs[area + 1]; struct glyph *text = row->glyphs[area] + row->used[area]; while (text < end) *text++ = space_glyph; row->used[area] = text - row->glyphs[area]; } } /* Add spaces to the end of ROW in a frame matrix until index UPTO is reached. In frame matrices only one area, TEXT_AREA, is used. */ static void fill_up_frame_row_with_spaces (row, upto) struct glyph_row *row; int upto; { int i = row->used[TEXT_AREA]; struct glyph *glyph = row->glyphs[TEXT_AREA]; while (i < upto) glyph[i++] = space_glyph; row->used[TEXT_AREA] = i; } /********************************************************************** Mirroring operations on frame matrices in window matrices **********************************************************************/ /* Set frame being updated via frame-based redisplay to F. This function must be called before updates to make explicit that we are working on frame matrices or not. */ static INLINE void set_frame_matrix_frame (f) struct frame *f; { frame_matrix_frame = f; } /* Make sure glyph row ROW in CURRENT_MATRIX is up to date. DESIRED_MATRIX is the desired matrix corresponding to CURRENT_MATRIX. The update is done by exchanging glyph pointers between rows in CURRENT_MATRIX and DESIRED_MATRIX. If frame_matrix_frame is non-null, this indicates that the exchange is done in frame matrices, and that we have to perform analogous operations in window matrices of frame_matrix_frame. */ static INLINE void make_current (desired_matrix, current_matrix, row) struct glyph_matrix *desired_matrix, *current_matrix; int row; { struct glyph_row *current_row = MATRIX_ROW (current_matrix, row); struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, row); int mouse_face_p = current_row->mouse_face_p; /* Do current_row = desired_row. This exchanges glyph pointers between both rows, and does a structure assignment otherwise. */ assign_row (current_row, desired_row); /* Enable current_row to mark it as valid. */ current_row->enabled_p = 1; current_row->mouse_face_p = mouse_face_p; /* If we are called on frame matrices, perform analogous operations for window matrices. */ if (frame_matrix_frame) mirror_make_current (XWINDOW (frame_matrix_frame->root_window), row); } /* W is the root of a window tree. FRAME_ROW is the index of a row in W's frame which has been made current (by swapping pointers between current and desired matrix). Perform analogous operations in the matrices of leaf windows in the window tree rooted at W. */ static void mirror_make_current (w, frame_row) struct window *w; int frame_row; { while (w) { if (!NILP (w->hchild)) mirror_make_current (XWINDOW (w->hchild), frame_row); else if (!NILP (w->vchild)) mirror_make_current (XWINDOW (w->vchild), frame_row); else { /* Row relative to window W. Don't use FRAME_TO_WINDOW_VPOS here because the checks performed in debug mode there will not allow the conversion. */ int row = frame_row - w->desired_matrix->matrix_y; /* If FRAME_ROW is within W, assign the desired row to the current row (exchanging glyph pointers). */ if (row >= 0 && row < w->desired_matrix->matrix_h) { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, row); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, row); if (desired_row->enabled_p) assign_row (current_row, desired_row); else swap_glyph_pointers (desired_row, current_row); current_row->enabled_p = 1; } } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Perform row dance after scrolling. We are working on the range of lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not including) in MATRIX. COPY_FROM is a vector containing, for each row I in the range 0 <= I < NLINES, the index of the original line to move to I. This index is relative to the row range, i.e. 0 <= index < NLINES. RETAINED_P is a vector containing zero for each row 0 <= I < NLINES which is empty. This function is called from do_scrolling and do_direct_scrolling. */ void mirrored_line_dance (matrix, unchanged_at_top, nlines, copy_from, retained_p) struct glyph_matrix *matrix; int unchanged_at_top, nlines; int *copy_from; char *retained_p; { /* A copy of original rows. */ struct glyph_row *old_rows; /* Rows to assign to. */ struct glyph_row *new_rows = MATRIX_ROW (matrix, unchanged_at_top); int i; /* Make a copy of the original rows. */ old_rows = (struct glyph_row *) alloca (nlines * sizeof *old_rows); bcopy (new_rows, old_rows, nlines * sizeof *old_rows); /* Assign new rows, maybe clear lines. */ for (i = 0; i < nlines; ++i) { int enabled_before_p = new_rows[i].enabled_p; xassert (i + unchanged_at_top < matrix->nrows); xassert (unchanged_at_top + copy_from[i] < matrix->nrows); new_rows[i] = old_rows[copy_from[i]]; new_rows[i].enabled_p = enabled_before_p; /* RETAINED_P is zero for empty lines. */ if (!retained_p[copy_from[i]]) new_rows[i].enabled_p = 0; } /* Do the same for window matrices, if MATRIX is a frame matrix. */ if (frame_matrix_frame) mirror_line_dance (XWINDOW (frame_matrix_frame->root_window), unchanged_at_top, nlines, copy_from, retained_p); } /* Synchronize glyph pointers in the current matrix of window W with the current frame matrix. */ static void sync_window_with_frame_matrix_rows (w) struct window *w; { struct frame *f = XFRAME (w->frame); struct glyph_row *window_row, *window_row_end, *frame_row; int left, right, x, width; /* Preconditions: W must be a leaf window on a tty frame. */ xassert (NILP (w->hchild) && NILP (w->vchild)); xassert (!FRAME_WINDOW_P (f)); left = margin_glyphs_to_reserve (w, 1, w->left_margin_cols); right = margin_glyphs_to_reserve (w, 1, w->right_margin_cols); x = w->current_matrix->matrix_x; width = w->current_matrix->matrix_w; window_row = w->current_matrix->rows; window_row_end = window_row + w->current_matrix->nrows; frame_row = f->current_matrix->rows + WINDOW_TOP_EDGE_LINE (w); for (; window_row < window_row_end; ++window_row, ++frame_row) { window_row->glyphs[LEFT_MARGIN_AREA] = frame_row->glyphs[0] + x; window_row->glyphs[TEXT_AREA] = window_row->glyphs[LEFT_MARGIN_AREA] + left; window_row->glyphs[LAST_AREA] = window_row->glyphs[LEFT_MARGIN_AREA] + width; window_row->glyphs[RIGHT_MARGIN_AREA] = window_row->glyphs[LAST_AREA] - right; } } /* Return the window in the window tree rooted in W containing frame row ROW. Value is null if none is found. */ struct window * frame_row_to_window (w, row) struct window *w; int row; { struct window *found = NULL; while (w && !found) { if (!NILP (w->hchild)) found = frame_row_to_window (XWINDOW (w->hchild), row); else if (!NILP (w->vchild)) found = frame_row_to_window (XWINDOW (w->vchild), row); else if (row >= WINDOW_TOP_EDGE_LINE (w) && row < WINDOW_BOTTOM_EDGE_LINE (w)) found = w; w = NILP (w->next) ? 0 : XWINDOW (w->next); } return found; } /* Perform a line dance in the window tree rooted at W, after scrolling a frame matrix in mirrored_line_dance. We are working on the range of lines UNCHANGED_AT_TOP + 1 to UNCHANGED_AT_TOP + NLINES (not including) in W's frame matrix. COPY_FROM is a vector containing, for each row I in the range 0 <= I < NLINES, the index of the original line to move to I. This index is relative to the row range, i.e. 0 <= index < NLINES. RETAINED_P is a vector containing zero for each row 0 <= I < NLINES which is empty. */ static void mirror_line_dance (w, unchanged_at_top, nlines, copy_from, retained_p) struct window *w; int unchanged_at_top, nlines; int *copy_from; char *retained_p; { while (w) { if (!NILP (w->hchild)) mirror_line_dance (XWINDOW (w->hchild), unchanged_at_top, nlines, copy_from, retained_p); else if (!NILP (w->vchild)) mirror_line_dance (XWINDOW (w->vchild), unchanged_at_top, nlines, copy_from, retained_p); else { /* W is a leaf window, and we are working on its current matrix m. */ struct glyph_matrix *m = w->current_matrix; int i, sync_p = 0; struct glyph_row *old_rows; /* Make a copy of the original rows of matrix m. */ old_rows = (struct glyph_row *) alloca (m->nrows * sizeof *old_rows); bcopy (m->rows, old_rows, m->nrows * sizeof *old_rows); for (i = 0; i < nlines; ++i) { /* Frame relative line assigned to. */ int frame_to = i + unchanged_at_top; /* Frame relative line assigned. */ int frame_from = copy_from[i] + unchanged_at_top; /* Window relative line assigned to. */ int window_to = frame_to - m->matrix_y; /* Window relative line assigned. */ int window_from = frame_from - m->matrix_y; /* Is assigned line inside window? */ int from_inside_window_p = window_from >= 0 && window_from < m->matrix_h; /* Is assigned to line inside window? */ int to_inside_window_p = window_to >= 0 && window_to < m->matrix_h; if (from_inside_window_p && to_inside_window_p) { /* Enabled setting before assignment. */ int enabled_before_p; /* Do the assignment. The enabled_p flag is saved over the assignment because the old redisplay did that. */ enabled_before_p = m->rows[window_to].enabled_p; m->rows[window_to] = old_rows[window_from]; m->rows[window_to].enabled_p = enabled_before_p; /* If frame line is empty, window line is empty, too. */ if (!retained_p[copy_from[i]]) m->rows[window_to].enabled_p = 0; } else if (to_inside_window_p) { /* A copy between windows. This is an infrequent case not worth optimizing. */ struct frame *f = XFRAME (w->frame); struct window *root = XWINDOW (FRAME_ROOT_WINDOW (f)); struct window *w2; struct glyph_matrix *m2; int m2_from; w2 = frame_row_to_window (root, frame_from); /* ttn@surf.glug.org: when enabling menu bar using `emacs -nw', FROM_FRAME sometimes has no associated window. This check avoids a segfault if W2 is null. */ if (w2) { m2 = w2->current_matrix; m2_from = frame_from - m2->matrix_y; copy_row_except_pointers (m->rows + window_to, m2->rows + m2_from); /* If frame line is empty, window line is empty, too. */ if (!retained_p[copy_from[i]]) m->rows[window_to].enabled_p = 0; } sync_p = 1; } else if (from_inside_window_p) sync_p = 1; } /* If there was a copy between windows, make sure glyph pointers are in sync with the frame matrix. */ if (sync_p) sync_window_with_frame_matrix_rows (w); /* Check that no pointers are lost. */ CHECK_MATRIX (m); } /* Next window on same level. */ w = NILP (w->next) ? 0 : XWINDOW (w->next); } } #if GLYPH_DEBUG /* Check that window and frame matrices agree about their understanding where glyphs of the rows are to find. For each window in the window tree rooted at W, check that rows in the matrices of leaf window agree with their frame matrices about glyph pointers. */ void check_window_matrix_pointers (w) struct window *w; { while (w) { if (!NILP (w->hchild)) check_window_matrix_pointers (XWINDOW (w->hchild)); else if (!NILP (w->vchild)) check_window_matrix_pointers (XWINDOW (w->vchild)); else { struct frame *f = XFRAME (w->frame); check_matrix_pointers (w->desired_matrix, f->desired_matrix); check_matrix_pointers (w->current_matrix, f->current_matrix); } w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /* Check that window rows are slices of frame rows. WINDOW_MATRIX is a window and FRAME_MATRIX is the corresponding frame matrix. For each row in WINDOW_MATRIX check that it's a slice of the corresponding frame row. If it isn't, abort. */ static void check_matrix_pointers (window_matrix, frame_matrix) struct glyph_matrix *window_matrix, *frame_matrix; { /* Row number in WINDOW_MATRIX. */ int i = 0; /* Row number corresponding to I in FRAME_MATRIX. */ int j = window_matrix->matrix_y; /* For all rows check that the row in the window matrix is a slice of the row in the frame matrix. If it isn't we didn't mirror an operation on the frame matrix correctly. */ while (i < window_matrix->nrows) { if (!glyph_row_slice_p (window_matrix->rows + i, frame_matrix->rows + j)) abort (); ++i, ++j; } } #endif /* GLYPH_DEBUG != 0 */ /********************************************************************** VPOS and HPOS translations **********************************************************************/ #if GLYPH_DEBUG /* Translate vertical position VPOS which is relative to window W to a vertical position relative to W's frame. */ static int window_to_frame_vpos (w, vpos) struct window *w; int vpos; { struct frame *f = XFRAME (w->frame); xassert (!FRAME_WINDOW_P (f)); xassert (vpos >= 0 && vpos <= w->desired_matrix->nrows); vpos += WINDOW_TOP_EDGE_LINE (w); xassert (vpos >= 0 && vpos <= FRAME_LINES (f)); return vpos; } /* Translate horizontal position HPOS which is relative to window W to a horizontal position relative to W's frame. */ static int window_to_frame_hpos (w, hpos) struct window *w; int hpos; { xassert (!FRAME_WINDOW_P (XFRAME (w->frame))); hpos += WINDOW_LEFT_EDGE_COL (w); return hpos; } #endif /* GLYPH_DEBUG */ /********************************************************************** Redrawing Frames **********************************************************************/ DEFUN ("redraw-frame", Fredraw_frame, Sredraw_frame, 1, 1, 0, doc: /* Clear frame FRAME and output again what is supposed to appear on it. */) (frame) Lisp_Object frame; { struct frame *f; CHECK_LIVE_FRAME (frame); f = XFRAME (frame); /* Ignore redraw requests, if frame has no glyphs yet. (Implementation note: It still has to be checked why we are called so early here). */ if (!glyphs_initialized_initially_p) return Qnil; update_begin (f); if (FRAME_MSDOS_P (f)) set_terminal_modes (); clear_frame (); clear_current_matrices (f); update_end (f); fflush (stdout); windows_or_buffers_changed++; /* Mark all windows as inaccurate, so that every window will have its redisplay done. */ mark_window_display_accurate (FRAME_ROOT_WINDOW (f), 0); set_window_update_flags (XWINDOW (FRAME_ROOT_WINDOW (f)), 1); f->garbaged = 0; return Qnil; } /* Redraw frame F. This is nothing more than a call to the Lisp function redraw-frame. */ void redraw_frame (f) struct frame *f; { Lisp_Object frame; XSETFRAME (frame, f); Fredraw_frame (frame); } DEFUN ("redraw-display", Fredraw_display, Sredraw_display, 0, 0, "", doc: /* Clear and redisplay all visible frames. */) () { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) if (FRAME_VISIBLE_P (XFRAME (frame))) Fredraw_frame (frame); return Qnil; } /* This is used when frame_garbaged is set. Call Fredraw_frame on all visible frames marked as garbaged. */ void redraw_garbaged_frames () { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) if (FRAME_VISIBLE_P (XFRAME (frame)) && FRAME_GARBAGED_P (XFRAME (frame))) Fredraw_frame (frame); } /*********************************************************************** Direct Operations ***********************************************************************/ /* Try to update display and current glyph matrix directly. This function is called after a character G has been inserted into current_buffer. It tries to update the current glyph matrix and perform appropriate screen output to reflect the insertion. If it succeeds, the global flag redisplay_performed_directly_p will be set to 1, and thereby prevent the more costly general redisplay from running (see redisplay_internal). This function is not called for `hairy' character insertions. In particular, it is not called when after or before change functions exist, like they are used by font-lock. See keyboard.c for details where this function is called. */ int direct_output_for_insert (g) int g; { register struct frame *f = SELECTED_FRAME (); struct window *w = XWINDOW (selected_window); struct it it, it2; struct glyph_row *glyph_row; struct glyph *glyphs, *glyph, *end; int n; /* Non-null means that redisplay of W is based on window matrices. */ int window_redisplay_p = FRAME_WINDOW_P (f); /* Non-null means we are in overwrite mode. */ int overwrite_p = !NILP (current_buffer->overwrite_mode); int added_width; struct text_pos pos; int delta, delta_bytes; /* Not done directly. */ redisplay_performed_directly_p = 0; /* Quickly give up for some common cases. */ if (cursor_in_echo_area /* Give up if fonts have changed. */ || fonts_changed_p /* Give up if face attributes have been changed. */ || face_change_count /* Give up if cursor position not really known. */ || !display_completed /* Give up if buffer appears in two places. */ || buffer_shared > 1 /* Give up if currently displaying a message instead of the minibuffer contents. */ || (EQ (selected_window, minibuf_window) && EQ (minibuf_window, echo_area_window)) /* Give up for hscrolled mini-buffer because display of the prompt is handled specially there (see display_line). */ || (MINI_WINDOW_P (w) && XFASTINT (w->hscroll)) /* Give up if overwriting in the middle of a line. */ || (overwrite_p && PT != ZV && FETCH_BYTE (PT) != '\n') /* Give up for tabs and line ends. */ || g == '\t' || g == '\n' || g == '\r' /* Give up if unable to display the cursor in the window. */ || w->cursor.vpos < 0 /* Give up if we are showing a message or just cleared the message because we might need to resize the echo area window. */ || !NILP (echo_area_buffer[0]) || !NILP (echo_area_buffer[1]) || (glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos), /* Can't do it in a continued line because continuation lines would change. */ (glyph_row->continued_p || glyph_row->exact_window_width_line_p /* Can't use this method if the line overlaps others or is overlapped by others because these other lines would have to be redisplayed. */ || glyph_row->overlapping_p || glyph_row->overlapped_p)) /* Can't do it for partial width windows on terminal frames because we can't clear to eol in such a window. */ || (!window_redisplay_p && !WINDOW_FULL_WIDTH_P (w))) return 0; /* If we can't insert glyphs, we can use this method only at the end of a line. */ if (!char_ins_del_ok) if (PT != ZV && FETCH_BYTE (PT_BYTE) != '\n') return 0; /* Set up a display iterator structure for W. Glyphs will be produced in scratch_glyph_row. Current position is W's cursor position. */ clear_glyph_row (&scratch_glyph_row); SET_TEXT_POS (pos, PT, PT_BYTE); DEC_TEXT_POS (pos, !NILP (current_buffer->enable_multibyte_characters)); init_iterator (&it, w, CHARPOS (pos), BYTEPOS (pos), &scratch_glyph_row, DEFAULT_FACE_ID); glyph_row = MATRIX_ROW (w->current_matrix, w->cursor.vpos); if (glyph_row->mouse_face_p) return 0; /* Give up if highlighting trailing whitespace and we have trailing whitespace in glyph_row. We would have to remove the trailing whitespace face in that case. */ if (!NILP (Vshow_trailing_whitespace) && glyph_row->used[TEXT_AREA]) { struct glyph *last; last = glyph_row->glyphs[TEXT_AREA] + glyph_row->used[TEXT_AREA] - 1; if (last->type == STRETCH_GLYPH || (last->type == CHAR_GLYPH && last->u.ch == ' ')) return 0; } /* Give up if there are overlay strings at pos. This would fail if the overlay string has newlines in it. */ if (STRINGP (it.string)) return 0; it.hpos = w->cursor.hpos; it.vpos = w->cursor.vpos; it.current_x = w->cursor.x + it.first_visible_x; it.current_y = w->cursor.y; it.end_charpos = PT; it.stop_charpos = min (PT, it.stop_charpos); it.stop_charpos = max (IT_CHARPOS (it), it.stop_charpos); /* More than one display element may be returned for PT - 1 if (i) it's a control character which is translated into `\003' or `^C', or (ii) it has a display table entry, or (iii) it's a combination of both. */ delta = delta_bytes = 0; while (get_next_display_element (&it)) { PRODUCE_GLYPHS (&it); /* Give up if glyph doesn't fit completely on the line. */ if (it.current_x >= it.last_visible_x) return 0; /* Give up if new glyph has different ascent or descent than the original row, or if it is not a character glyph. */ if (glyph_row->ascent != it.ascent || glyph_row->height != it.ascent + it.descent || glyph_row->phys_ascent != it.phys_ascent || glyph_row->phys_height != it.phys_ascent + it.phys_descent || it.what != IT_CHARACTER) return 0; delta += 1; delta_bytes += it.len; set_iterator_to_next (&it, 1); } /* Give up if we hit the right edge of the window. We would have to insert truncation or continuation glyphs. */ added_width = it.current_x - (w->cursor.x + it.first_visible_x); if (glyph_row->pixel_width + added_width >= it.last_visible_x) return 0; /* Give up if there is a \t following in the line. */ it2 = it; it2.end_charpos = ZV; it2.stop_charpos = min (it2.stop_charpos, ZV); while (get_next_display_element (&it2) && !ITERATOR_AT_END_OF_LINE_P (&it2)) { if (it2.c == '\t') return 0; set_iterator_to_next (&it2, 1); } /* Number of new glyphs produced. */ n = it.glyph_row->used[TEXT_AREA]; /* Start and end of glyphs in original row. */ glyphs = glyph_row->glyphs[TEXT_AREA] + w->cursor.hpos; end = glyph_row->glyphs[1 + TEXT_AREA]; /* Make room for new glyphs, then insert them. */ xassert (end - glyphs - n >= 0); safe_bcopy ((char *) glyphs, (char *) (glyphs + n), (end - glyphs - n) * sizeof (*end)); bcopy (it.glyph_row->glyphs[TEXT_AREA], glyphs, n * sizeof *glyphs); glyph_row->used[TEXT_AREA] = min (glyph_row->used[TEXT_AREA] + n, end - glyph_row->glyphs[TEXT_AREA]); /* Compute new line width. */ glyph = glyph_row->glyphs[TEXT_AREA]; end = glyph + glyph_row->used[TEXT_AREA]; glyph_row->pixel_width = glyph_row->x; while (glyph < end) { glyph_row->pixel_width += glyph->pixel_width; ++glyph; } /* Increment buffer positions for glyphs following the newly inserted ones. */ for (glyph = glyphs + n; glyph < end; ++glyph) if (glyph->charpos > 0 && BUFFERP (glyph->object)) glyph->charpos += delta; if (MATRIX_ROW_END_CHARPOS (glyph_row) > 0) { MATRIX_ROW_END_CHARPOS (glyph_row) += delta; MATRIX_ROW_END_BYTEPOS (glyph_row) += delta_bytes; } /* Adjust positions in lines following the one we are in. */ increment_matrix_positions (w->current_matrix, w->cursor.vpos + 1, w->current_matrix->nrows, delta, delta_bytes); glyph_row->contains_overlapping_glyphs_p |= it.glyph_row->contains_overlapping_glyphs_p; glyph_row->displays_text_p = 1; w->window_end_vpos = make_number (max (w->cursor.vpos, XFASTINT (w->window_end_vpos))); if (!NILP (Vshow_trailing_whitespace)) highlight_trailing_whitespace (it.f, glyph_row); /* Write glyphs. If at end of row, we can simply call write_glyphs. In the middle, we have to insert glyphs. Note that this is now implemented for X frames. The implementation uses updated_window and updated_row. */ updated_row = glyph_row; updated_area = TEXT_AREA; update_begin (f); if (rif) { rif->update_window_begin_hook (w); if (glyphs == end - n /* In front of a space added by append_space. */ || (glyphs == end - n - 1 && (end - n)->charpos <= 0)) rif->write_glyphs (glyphs, n); else rif->insert_glyphs (glyphs, n); } else { if (glyphs == end - n) write_glyphs (glyphs, n); else insert_glyphs (glyphs, n); } w->cursor.hpos += n; w->cursor.x = it.current_x - it.first_visible_x; xassert (w->cursor.hpos >= 0 && w->cursor.hpos < w->desired_matrix->matrix_w); /* How to set the cursor differs depending on whether we are using a frame matrix or a window matrix. Note that when a frame matrix is used, cursor_to expects frame coordinates, and the X and Y parameters are not used. */ if (window_redisplay_p) rif->cursor_to (w->cursor.vpos, w->cursor.hpos, w->cursor.y, w->cursor.x); else { int x, y; x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos) + (INTEGERP (w->left_margin_cols) ? XFASTINT (w->left_margin_cols) : 0)); y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos); cursor_to (y, x); } #ifdef HAVE_WINDOW_SYSTEM update_window_fringes (w, 0); #endif if (rif) rif->update_window_end_hook (w, 1, 0); update_end (f); updated_row = NULL; fflush (stdout); TRACE ((stderr, "direct output for insert\n")); mark_window_display_accurate (it.window, 1); redisplay_performed_directly_p = 1; return 1; } /* Perform a direct display update for moving PT by N positions left or right. N < 0 means a movement backwards. This function is currently only called for N == 1 or N == -1. */ int direct_output_forward_char (n) int n; { struct frame *f = SELECTED_FRAME (); struct window *w = XWINDOW (selected_window); struct glyph_row *row; /* Give up if point moved out of or into a composition. */ if (check_point_in_composition (current_buffer, XINT (w->last_point), current_buffer, PT)) return 0; /* Give up if face attributes have been changed. */ if (face_change_count) return 0; /* Give up if current matrix is not up to date or we are displaying a message. */ if (!display_completed || cursor_in_echo_area) return 0; /* Give up if the buffer's direction is reversed. */ if (!NILP (XBUFFER (w->buffer)->direction_reversed)) return 0; /* Can't use direct output if highlighting a region. */ if (!NILP (Vtransient_mark_mode) && !NILP (current_buffer->mark_active)) return 0; /* Can't use direct output if highlighting trailing whitespace. */ if (!NILP (Vshow_trailing_whitespace)) return 0; /* Give up if we are showing a message or just cleared the message because we might need to resize the echo area window. */ if (!NILP (echo_area_buffer[0]) || !NILP (echo_area_buffer[1])) return 0; /* Give up if currently displaying a message instead of the minibuffer contents. */ if (XWINDOW (minibuf_window) == w && EQ (minibuf_window, echo_area_window)) return 0; /* Give up if we don't know where the cursor is. */ if (w->cursor.vpos < 0) return 0; row = MATRIX_ROW (w->current_matrix, w->cursor.vpos); /* Give up if PT is outside of the last known cursor row. */ if (PT <= MATRIX_ROW_START_CHARPOS (row) || PT >= MATRIX_ROW_END_CHARPOS (row)) return 0; set_cursor_from_row (w, row, w->current_matrix, 0, 0, 0, 0); w->last_cursor = w->cursor; XSETFASTINT (w->last_point, PT); xassert (w->cursor.hpos >= 0 && w->cursor.hpos < w->desired_matrix->matrix_w); if (FRAME_WINDOW_P (f)) rif->cursor_to (w->cursor.vpos, w->cursor.hpos, w->cursor.y, w->cursor.x); else { int x, y; x = (WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos) + (INTEGERP (w->left_margin_cols) ? XFASTINT (w->left_margin_cols) : 0)); y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos); cursor_to (y, x); } fflush (stdout); redisplay_performed_directly_p = 1; return 1; } /*********************************************************************** Frame Update ***********************************************************************/ /* Update frame F based on the data in desired matrices. If FORCE_P is non-zero, don't let redisplay be stopped by detecting pending input. If INHIBIT_HAIRY_ID_P is non-zero, don't try scrolling. Value is non-zero if redisplay was stopped due to pending input. */ int update_frame (f, force_p, inhibit_hairy_id_p) struct frame *f; int force_p; int inhibit_hairy_id_p; { /* 1 means display has been paused because of pending input. */ int paused_p; struct window *root_window = XWINDOW (f->root_window); if (FRAME_WINDOW_P (f)) { /* We are working on window matrix basis. All windows whose flag must_be_updated_p is set have to be updated. */ /* Record that we are not working on frame matrices. */ set_frame_matrix_frame (NULL); /* Update all windows in the window tree of F, maybe stopping when pending input is detected. */ update_begin (f); /* Update the menu bar on X frames that don't have toolkit support. */ if (WINDOWP (f->menu_bar_window)) update_window (XWINDOW (f->menu_bar_window), 1); /* Update the tool-bar window, if present. */ if (WINDOWP (f->tool_bar_window)) { struct window *w = XWINDOW (f->tool_bar_window); /* Update tool-bar window. */ if (w->must_be_updated_p) { Lisp_Object tem; update_window (w, 1); w->must_be_updated_p = 0; /* Swap tool-bar strings. We swap because we want to reuse strings. */ tem = f->current_tool_bar_string; f->current_tool_bar_string = f->desired_tool_bar_string; f->desired_tool_bar_string = tem; } } /* Update windows. */ paused_p = update_window_tree (root_window, force_p); update_end (f); /* This flush is a performance bottleneck under X, and it doesn't seem to be necessary anyway (in general). It is necessary when resizing the window with the mouse, or at least the fringes are not redrawn in a timely manner. ++kfs */ if (f->force_flush_display_p) { rif->flush_display (f); f->force_flush_display_p = 0; } } else { /* We are working on frame matrix basis. Set the frame on whose frame matrix we operate. */ set_frame_matrix_frame (f); /* Build F's desired matrix from window matrices. */ build_frame_matrix (f); /* Update the display */ update_begin (f); paused_p = update_frame_1 (f, force_p, inhibit_hairy_id_p); update_end (f); if (termscript) fflush (termscript); fflush (stdout); /* Check window matrices for lost pointers. */ #if GLYPH_DEBUG check_window_matrix_pointers (root_window); add_frame_display_history (f, paused_p); #endif } /* Reset flags indicating that a window should be updated. */ set_window_update_flags (root_window, 0); display_completed = !paused_p; return paused_p; } /************************************************************************ Window-based updates ************************************************************************/ /* Perform updates in window tree rooted at W. FORCE_P non-zero means don't stop updating when input is pending. */ static int update_window_tree (w, force_p) struct window *w; int force_p; { int paused_p = 0; while (w && !paused_p) { if (!NILP (w->hchild)) paused_p |= update_window_tree (XWINDOW (w->hchild), force_p); else if (!NILP (w->vchild)) paused_p |= update_window_tree (XWINDOW (w->vchild), force_p); else if (w->must_be_updated_p) paused_p |= update_window (w, force_p); w = NILP (w->next) ? 0 : XWINDOW (w->next); } return paused_p; } /* Update window W if its flag must_be_updated_p is non-zero. If FORCE_P is non-zero, don't stop updating if input is pending. */ void update_single_window (w, force_p) struct window *w; int force_p; { if (w->must_be_updated_p) { struct frame *f = XFRAME (WINDOW_FRAME (w)); /* Record that this is not a frame-based redisplay. */ set_frame_matrix_frame (NULL); /* Update W. */ update_begin (f); update_window (w, force_p); update_end (f); /* Reset flag in W. */ w->must_be_updated_p = 0; } } #ifdef HAVE_WINDOW_SYSTEM /* Redraw lines from the current matrix of window W that are overlapped by other rows. YB is bottom-most y-position in W. */ static void redraw_overlapped_rows (w, yb) struct window *w; int yb; { int i; /* If rows overlapping others have been changed, the rows being overlapped have to be redrawn. This won't draw lines that have already been drawn in update_window_line because overlapped_p in desired rows is 0, so after row assignment overlapped_p in current rows is 0. */ for (i = 0; i < w->current_matrix->nrows; ++i) { struct glyph_row *row = w->current_matrix->rows + i; if (!row->enabled_p) break; else if (row->mode_line_p) continue; if (row->overlapped_p) { enum glyph_row_area area; for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area) { updated_row = row; updated_area = area; rif->cursor_to (i, 0, row->y, area == TEXT_AREA ? row->x : 0); if (row->used[area]) rif->write_glyphs (row->glyphs[area], row->used[area]); rif->clear_end_of_line (-1); } row->overlapped_p = 0; } if (MATRIX_ROW_BOTTOM_Y (row) >= yb) break; } } /* Redraw lines from the current matrix of window W that overlap others. YB is bottom-most y-position in W. */ static void redraw_overlapping_rows (w, yb) struct window *w; int yb; { int i, bottom_y; struct glyph_row *row; for (i = 0; i < w->current_matrix->nrows; ++i) { row = w->current_matrix->rows + i; if (!row->enabled_p) break; else if (row->mode_line_p) continue; bottom_y = MATRIX_ROW_BOTTOM_Y (row); if (row->overlapping_p && i > 0 && bottom_y < yb) { int overlaps = 0; if (MATRIX_ROW_OVERLAPS_PRED_P (row) && !MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p) overlaps |= OVERLAPS_PRED; if (MATRIX_ROW_OVERLAPS_SUCC_P (row) && !MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p) overlaps |= OVERLAPS_SUCC; if (overlaps) { if (row->used[LEFT_MARGIN_AREA]) rif->fix_overlapping_area (w, row, LEFT_MARGIN_AREA, overlaps); if (row->used[TEXT_AREA]) rif->fix_overlapping_area (w, row, TEXT_AREA, overlaps); if (row->used[RIGHT_MARGIN_AREA]) rif->fix_overlapping_area (w, row, RIGHT_MARGIN_AREA, overlaps); /* Record in neighbour rows that ROW overwrites part of their display. */ if (overlaps & OVERLAPS_PRED) MATRIX_ROW (w->current_matrix, i - 1)->overlapped_p = 1; if (overlaps & OVERLAPS_SUCC) MATRIX_ROW (w->current_matrix, i + 1)->overlapped_p = 1; } } if (bottom_y >= yb) break; } } #endif /* HAVE_WINDOW_SYSTEM */ #ifdef GLYPH_DEBUG /* Check that no row in the current matrix of window W is enabled which is below what's displayed in the window. */ void check_current_matrix_flags (w) struct window *w; { int last_seen_p = 0; int i, yb = window_text_bottom_y (w); for (i = 0; i < w->current_matrix->nrows - 1; ++i) { struct glyph_row *row = MATRIX_ROW (w->current_matrix, i); if (!last_seen_p && MATRIX_ROW_BOTTOM_Y (row) >= yb) last_seen_p = 1; else if (last_seen_p && row->enabled_p) abort (); } } #endif /* GLYPH_DEBUG */ /* Update display of window W. FORCE_P non-zero means that we should not stop when detecting pending input. */ static int update_window (w, force_p) struct window *w; int force_p; { struct glyph_matrix *desired_matrix = w->desired_matrix; int paused_p; int preempt_count = baud_rate / 2400 + 1; extern int input_pending; extern Lisp_Object do_mouse_tracking; #if GLYPH_DEBUG /* Check that W's frame doesn't have glyph matrices. */ xassert (FRAME_WINDOW_P (XFRAME (WINDOW_FRAME (w)))); xassert (updating_frame != NULL); #endif /* Check pending input the first time so that we can quickly return. */ if (redisplay_dont_pause) force_p = 1; else detect_input_pending_ignore_squeezables (); /* If forced to complete the update, or if no input is pending, do the update. */ if (force_p || !input_pending || !NILP (do_mouse_tracking)) { struct glyph_row *row, *end; struct glyph_row *mode_line_row; struct glyph_row *header_line_row; int yb, changed_p = 0, mouse_face_overwritten_p = 0, n_updated; rif->update_window_begin_hook (w); yb = window_text_bottom_y (w); /* If window has a header line, update it before everything else. Adjust y-positions of other rows by the header line height. */ row = desired_matrix->rows; end = row + desired_matrix->nrows - 1; if (row->mode_line_p) { header_line_row = row; ++row; } else header_line_row = NULL; /* Update the mode line, if necessary. */ mode_line_row = MATRIX_MODE_LINE_ROW (desired_matrix); if (mode_line_row->mode_line_p && mode_line_row->enabled_p) { mode_line_row->y = yb; update_window_line (w, MATRIX_ROW_VPOS (mode_line_row, desired_matrix), &mouse_face_overwritten_p); } /* Find first enabled row. Optimizations in redisplay_internal may lead to an update with only one row enabled. There may be also completely empty matrices. */ while (row < end && !row->enabled_p) ++row; /* Try reusing part of the display by copying. */ if (row < end && !desired_matrix->no_scrolling_p) { int rc = scrolling_window (w, header_line_row != NULL); if (rc < 0) { /* All rows were found to be equal. */ paused_p = 0; goto set_cursor; } else if (rc > 0) { /* We've scrolled the display. */ force_p = 1; changed_p = 1; } } /* Update the rest of the lines. */ for (n_updated = 0; row < end && (force_p || !input_pending); ++row) if (row->enabled_p) { int vpos = MATRIX_ROW_VPOS (row, desired_matrix); int i; /* We'll have to play a little bit with when to detect_input_pending. If it's done too often, scrolling large windows with repeated scroll-up commands will too quickly pause redisplay. */ if (!force_p && ++n_updated % preempt_count == 0) detect_input_pending_ignore_squeezables (); changed_p |= update_window_line (w, vpos, &mouse_face_overwritten_p); /* Mark all rows below the last visible one in the current matrix as invalid. This is necessary because of variable line heights. Consider the case of three successive redisplays, where the first displays 5 lines, the second 3 lines, and the third 5 lines again. If the second redisplay wouldn't mark rows in the current matrix invalid, the third redisplay might be tempted to optimize redisplay based on lines displayed in the first redisplay. */ if (MATRIX_ROW_BOTTOM_Y (row) >= yb) for (i = vpos + 1; i < w->current_matrix->nrows - 1; ++i) MATRIX_ROW (w->current_matrix, i)->enabled_p = 0; } /* Was display preempted? */ paused_p = row < end; set_cursor: /* Update the header line after scrolling because a new header line would otherwise overwrite lines at the top of the window that can be scrolled. */ if (header_line_row && header_line_row->enabled_p) { header_line_row->y = 0; update_window_line (w, 0, &mouse_face_overwritten_p); } /* Fix the appearance of overlapping/overlapped rows. */ if (!paused_p && !w->pseudo_window_p) { #ifdef HAVE_WINDOW_SYSTEM if (changed_p && rif->fix_overlapping_area) { redraw_overlapped_rows (w, yb); redraw_overlapping_rows (w, yb); } #endif /* Make cursor visible at cursor position of W. */ set_window_cursor_after_update (w); #if 0 /* Check that current matrix invariants are satisfied. This is for debugging only. See the comment of check_matrix_invariants. */ IF_DEBUG (check_matrix_invariants (w)); #endif } #if GLYPH_DEBUG /* Remember the redisplay method used to display the matrix. */ strcpy (w->current_matrix->method, w->desired_matrix->method); #endif #ifdef HAVE_WINDOW_SYSTEM update_window_fringes (w, 0); #endif /* End the update of window W. Don't set the cursor if we paused updating the display because in this case, set_window_cursor_after_update hasn't been called, and output_cursor doesn't contain the cursor location. */ rif->update_window_end_hook (w, !paused_p, mouse_face_overwritten_p); } else paused_p = 1; #if GLYPH_DEBUG /* check_current_matrix_flags (w); */ add_window_display_history (w, w->current_matrix->method, paused_p); #endif clear_glyph_matrix (desired_matrix); return paused_p; } /* Update the display of area AREA in window W, row number VPOS. AREA can be either LEFT_MARGIN_AREA or RIGHT_MARGIN_AREA. */ static void update_marginal_area (w, area, vpos) struct window *w; int area, vpos; { struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); /* Let functions in xterm.c know what area subsequent X positions will be relative to. */ updated_area = area; /* Set cursor to start of glyphs, write them, and clear to the end of the area. I don't think that something more sophisticated is necessary here, since marginal areas will not be the default. */ rif->cursor_to (vpos, 0, desired_row->y, 0); if (desired_row->used[area]) rif->write_glyphs (desired_row->glyphs[area], desired_row->used[area]); rif->clear_end_of_line (-1); } /* Update the display of the text area of row VPOS in window W. Value is non-zero if display has changed. */ static int update_text_area (w, vpos) struct window *w; int vpos; { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); int changed_p = 0; /* Let functions in xterm.c know what area subsequent X positions will be relative to. */ updated_area = TEXT_AREA; /* If rows are at different X or Y, or rows have different height, or the current row is marked invalid, write the entire line. */ if (!current_row->enabled_p || desired_row->y != current_row->y || desired_row->ascent != current_row->ascent || desired_row->phys_ascent != current_row->phys_ascent || desired_row->phys_height != current_row->phys_height || desired_row->visible_height != current_row->visible_height || current_row->overlapped_p || current_row->mouse_face_p || current_row->x != desired_row->x) { rif->cursor_to (vpos, 0, desired_row->y, desired_row->x); if (desired_row->used[TEXT_AREA]) rif->write_glyphs (desired_row->glyphs[TEXT_AREA], desired_row->used[TEXT_AREA]); /* Clear to end of window. */ rif->clear_end_of_line (-1); changed_p = 1; /* This erases the cursor. We do this here because notice_overwritten_cursor cannot easily check this, which might indicate that the whole functionality of notice_overwritten_cursor would better be implemented here. On the other hand, we need notice_overwritten_cursor as long as mouse highlighting is done asynchronously outside of redisplay. */ if (vpos == w->phys_cursor.vpos) w->phys_cursor_on_p = 0; } else { int stop, i, x; struct glyph *current_glyph = current_row->glyphs[TEXT_AREA]; struct glyph *desired_glyph = desired_row->glyphs[TEXT_AREA]; int overlapping_glyphs_p = current_row->contains_overlapping_glyphs_p; int desired_stop_pos = desired_row->used[TEXT_AREA]; /* If the desired row extends its face to the text area end, and unless the current row also does so at the same position, make sure we write at least one glyph, so that the face extension actually takes place. */ if (MATRIX_ROW_EXTENDS_FACE_P (desired_row) && (desired_stop_pos < current_row->used[TEXT_AREA] || (desired_stop_pos == current_row->used[TEXT_AREA] && !MATRIX_ROW_EXTENDS_FACE_P (current_row)))) --desired_stop_pos; stop = min (current_row->used[TEXT_AREA], desired_stop_pos); i = 0; x = desired_row->x; /* Loop over glyphs that current and desired row may have in common. */ while (i < stop) { int can_skip_p = 1; /* Skip over glyphs that both rows have in common. These don't have to be written. We can't skip if the last current glyph overlaps the glyph to its right. For example, consider a current row of `if ' with the `f' in Courier bold so that it overlaps the ` ' to its right. If the desired row is ` ', we would skip over the space after the `if' and there would remain a pixel from the `f' on the screen. */ if (overlapping_glyphs_p && i > 0) { struct glyph *glyph = ¤t_row->glyphs[TEXT_AREA][i - 1]; int left, right; rif->get_glyph_overhangs (glyph, XFRAME (w->frame), &left, &right); can_skip_p = right == 0; } if (can_skip_p) { while (i < stop && GLYPH_EQUAL_P (desired_glyph, current_glyph)) { x += desired_glyph->pixel_width; ++desired_glyph, ++current_glyph, ++i; } /* Consider the case that the current row contains "xxx ppp ggg" in italic Courier font, and the desired row is "xxx ggg". The character `p' has lbearing, `g' has not. The loop above will stop in front of the first `p' in the current row. If we would start writing glyphs there, we wouldn't erase the lbearing of the `p'. The rest of the lbearing problem is then taken care of by draw_glyphs. */ if (overlapping_glyphs_p && i > 0 && i < current_row->used[TEXT_AREA] && (current_row->used[TEXT_AREA] != desired_row->used[TEXT_AREA])) { int left, right; rif->get_glyph_overhangs (current_glyph, XFRAME (w->frame), &left, &right); while (left > 0 && i > 0) { --i, --desired_glyph, --current_glyph; x -= desired_glyph->pixel_width; left -= desired_glyph->pixel_width; } } } /* Try to avoid writing the entire rest of the desired row by looking for a resync point. This mainly prevents mode line flickering in the case the mode line is in fixed-pitch font, which it usually will be. */ if (i < desired_row->used[TEXT_AREA]) { int start_x = x, start_hpos = i; struct glyph *start = desired_glyph; int current_x = x; int skip_first_p = !can_skip_p; /* Find the next glyph that's equal again. */ while (i < stop && (skip_first_p || !GLYPH_EQUAL_P (desired_glyph, current_glyph)) && x == current_x) { x += desired_glyph->pixel_width; current_x += current_glyph->pixel_width; ++desired_glyph, ++current_glyph, ++i; skip_first_p = 0; } if (i == start_hpos || x != current_x) { i = start_hpos; x = start_x; desired_glyph = start; break; } rif->cursor_to (vpos, start_hpos, desired_row->y, start_x); rif->write_glyphs (start, i - start_hpos); changed_p = 1; } } /* Write the rest. */ if (i < desired_row->used[TEXT_AREA]) { rif->cursor_to (vpos, i, desired_row->y, x); rif->write_glyphs (desired_glyph, desired_row->used[TEXT_AREA] - i); changed_p = 1; } /* Maybe clear to end of line. */ if (MATRIX_ROW_EXTENDS_FACE_P (desired_row)) { /* If new row extends to the end of the text area, nothing has to be cleared, if and only if we did a write_glyphs above. This is made sure by setting desired_stop_pos appropriately above. */ xassert (i < desired_row->used[TEXT_AREA] || ((desired_row->used[TEXT_AREA] == current_row->used[TEXT_AREA]) && MATRIX_ROW_EXTENDS_FACE_P (current_row))); } else if (MATRIX_ROW_EXTENDS_FACE_P (current_row)) { /* If old row extends to the end of the text area, clear. */ if (i >= desired_row->used[TEXT_AREA]) rif->cursor_to (vpos, i, desired_row->y, desired_row->pixel_width); rif->clear_end_of_line (-1); changed_p = 1; } else if (desired_row->pixel_width < current_row->pixel_width) { /* Otherwise clear to the end of the old row. Everything after that position should be clear already. */ int x; if (i >= desired_row->used[TEXT_AREA]) rif->cursor_to (vpos, i, desired_row->y, desired_row->pixel_width); /* If cursor is displayed at the end of the line, make sure it's cleared. Nowadays we don't have a phys_cursor_glyph with which to erase the cursor (because this method doesn't work with lbearing/rbearing), so we must do it this way. */ if (vpos == w->phys_cursor.vpos && w->phys_cursor.hpos >= desired_row->used[TEXT_AREA]) { w->phys_cursor_on_p = 0; x = -1; } else x = current_row->pixel_width; rif->clear_end_of_line (x); changed_p = 1; } } return changed_p; } /* Update row VPOS in window W. Value is non-zero if display has been changed. */ static int update_window_line (w, vpos, mouse_face_overwritten_p) struct window *w; int vpos, *mouse_face_overwritten_p; { struct glyph_row *current_row = MATRIX_ROW (w->current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (w->desired_matrix, vpos); int changed_p = 0; /* Set the row being updated. This is important to let xterm.c know what line height values are in effect. */ updated_row = desired_row; /* A row can be completely invisible in case a desired matrix was built with a vscroll and then make_cursor_line_fully_visible shifts the matrix. Make sure to make such rows current anyway, since we need the correct y-position, for example, in the current matrix. */ if (desired_row->mode_line_p || desired_row->visible_height > 0) { xassert (desired_row->enabled_p); /* Update display of the left margin area, if there is one. */ if (!desired_row->full_width_p && !NILP (w->left_margin_cols)) { changed_p = 1; update_marginal_area (w, LEFT_MARGIN_AREA, vpos); } /* Update the display of the text area. */ if (update_text_area (w, vpos)) { changed_p = 1; if (current_row->mouse_face_p) *mouse_face_overwritten_p = 1; } /* Update display of the right margin area, if there is one. */ if (!desired_row->full_width_p && !NILP (w->right_margin_cols)) { changed_p = 1; update_marginal_area (w, RIGHT_MARGIN_AREA, vpos); } /* Draw truncation marks etc. */ if (!current_row->enabled_p || desired_row->y != current_row->y || desired_row->visible_height != current_row->visible_height || desired_row->cursor_in_fringe_p != current_row->cursor_in_fringe_p || desired_row->overlay_arrow_bitmap != current_row->overlay_arrow_bitmap || current_row->redraw_fringe_bitmaps_p || desired_row->mode_line_p != current_row->mode_line_p || desired_row->exact_window_width_line_p != current_row->exact_window_width_line_p || (MATRIX_ROW_CONTINUATION_LINE_P (desired_row) != MATRIX_ROW_CONTINUATION_LINE_P (current_row))) rif->after_update_window_line_hook (desired_row); } /* Update current_row from desired_row. */ make_current (w->desired_matrix, w->current_matrix, vpos); updated_row = NULL; return changed_p; } /* Set the cursor after an update of window W. This function may only be called from update_window. */ static void set_window_cursor_after_update (w) struct window *w; { struct frame *f = XFRAME (w->frame); int cx, cy, vpos, hpos; /* Not intended for frame matrix updates. */ xassert (FRAME_WINDOW_P (f)); if (cursor_in_echo_area && !NILP (echo_area_buffer[0]) /* If we are showing a message instead of the mini-buffer, show the cursor for the message instead. */ && XWINDOW (minibuf_window) == w && EQ (minibuf_window, echo_area_window) /* These cases apply only to the frame that contains the active mini-buffer window. */ && FRAME_HAS_MINIBUF_P (f) && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window)) { cx = cy = vpos = hpos = 0; if (cursor_in_echo_area >= 0) { /* If the mini-buffer is several lines high, find the last line that has any text on it. Note: either all lines are enabled or none. Otherwise we wouldn't be able to determine Y. */ struct glyph_row *row, *last_row; struct glyph *glyph; int yb = window_text_bottom_y (w); last_row = NULL; row = w->current_matrix->rows; while (row->enabled_p && (last_row == NULL || MATRIX_ROW_BOTTOM_Y (row) <= yb)) { if (row->used[TEXT_AREA] && row->glyphs[TEXT_AREA][0].charpos >= 0) last_row = row; ++row; } if (last_row) { struct glyph *start = last_row->glyphs[TEXT_AREA]; struct glyph *last = start + last_row->used[TEXT_AREA] - 1; while (last > start && last->charpos < 0) --last; for (glyph = start; glyph < last; ++glyph) { cx += glyph->pixel_width; ++hpos; } cy = last_row->y; vpos = MATRIX_ROW_VPOS (last_row, w->current_matrix); } } } else { cx = w->cursor.x; cy = w->cursor.y; hpos = w->cursor.hpos; vpos = w->cursor.vpos; } /* Window cursor can be out of sync for horizontally split windows. */ hpos = max (0, hpos); hpos = min (w->current_matrix->matrix_w - 1, hpos); vpos = max (0, vpos); vpos = min (w->current_matrix->nrows - 1, vpos); rif->cursor_to (vpos, hpos, cy, cx); } /* Set WINDOW->must_be_updated_p to ON_P for all windows in the window tree rooted at W. */ void set_window_update_flags (w, on_p) struct window *w; int on_p; { while (w) { if (!NILP (w->hchild)) set_window_update_flags (XWINDOW (w->hchild), on_p); else if (!NILP (w->vchild)) set_window_update_flags (XWINDOW (w->vchild), on_p); else w->must_be_updated_p = on_p; w = NILP (w->next) ? 0 : XWINDOW (w->next); } } /*********************************************************************** Window-Based Scrolling ***********************************************************************/ /* Structure describing rows in scrolling_window. */ struct row_entry { /* Number of occurrences of this row in desired and current matrix. */ int old_uses, new_uses; /* Vpos of row in new matrix. */ int new_line_number; /* Bucket index of this row_entry in the hash table row_table. */ int bucket; /* The row described by this entry. */ struct glyph_row *row; /* Hash collision chain. */ struct row_entry *next; }; /* A pool to allocate row_entry structures from, and the size of the pool. The pool is reallocated in scrolling_window when we find that we need a larger one. */ static struct row_entry *row_entry_pool; static int row_entry_pool_size; /* Index of next free entry in row_entry_pool. */ static int row_entry_idx; /* The hash table used during scrolling, and the table's size. This table is used to quickly identify equal rows in the desired and current matrix. */ static struct row_entry **row_table; static int row_table_size; /* Vectors of pointers to row_entry structures belonging to the current and desired matrix, and the size of the vectors. */ static struct row_entry **old_lines, **new_lines; static int old_lines_size, new_lines_size; /* A pool to allocate run structures from, and its size. */ static struct run *run_pool; static int runs_size; /* A vector of runs of lines found during scrolling. */ static struct run **runs; /* Add glyph row ROW to the scrolling hash table during the scrolling of window W. */ static INLINE struct row_entry * add_row_entry (w, row) struct window *w; struct glyph_row *row; { struct row_entry *entry; int i = row->hash % row_table_size; entry = row_table[i]; while (entry && !row_equal_p (w, entry->row, row, 1)) entry = entry->next; if (entry == NULL) { entry = row_entry_pool + row_entry_idx++; entry->row = row; entry->old_uses = entry->new_uses = 0; entry->new_line_number = 0; entry->bucket = i; entry->next = row_table[i]; row_table[i] = entry; } return entry; } /* Try to reuse part of the current display of W by scrolling lines. HEADER_LINE_P non-zero means W has a header line. The algorithm is taken from Communications of the ACM, Apr78 "A Technique for Isolating Differences Between Files." It should take O(N) time. A short outline of the steps of the algorithm 1. Skip lines equal at the start and end of both matrices. 2. Enter rows in the current and desired matrix into a symbol table, counting how often they appear in both matrices. 3. Rows that appear exactly once in both matrices serve as anchors, i.e. we assume that such lines are likely to have been moved. 4. Starting from anchor lines, extend regions to be scrolled both forward and backward. Value is -1 if all rows were found to be equal. 0 to indicate that we did not scroll the display, or 1 if we did scroll. */ static int scrolling_window (w, header_line_p) struct window *w; int header_line_p; { struct glyph_matrix *desired_matrix = w->desired_matrix; struct glyph_matrix *current_matrix = w->current_matrix; int yb = window_text_bottom_y (w); int i, j, first_old, first_new, last_old, last_new; int nruns, nbytes, n, run_idx; struct row_entry *entry; /* Skip over rows equal at the start. */ for (i = header_line_p ? 1 : 0; i < current_matrix->nrows - 1; ++i) { struct glyph_row *d = MATRIX_ROW (desired_matrix, i); struct glyph_row *c = MATRIX_ROW (current_matrix, i); if (c->enabled_p && d->enabled_p && !d->redraw_fringe_bitmaps_p && c->y == d->y && MATRIX_ROW_BOTTOM_Y (c) <= yb && MATRIX_ROW_BOTTOM_Y (d) <= yb && row_equal_p (w, c, d, 1)) { assign_row (c, d); d->enabled_p = 0; } else break; } /* Give up if some rows in the desired matrix are not enabled. */ if (!MATRIX_ROW (desired_matrix, i)->enabled_p) return -1; first_old = first_new = i; /* Set last_new to the index + 1 of the last enabled row in the desired matrix. */ i = first_new + 1; while (i < desired_matrix->nrows - 1 && MATRIX_ROW (desired_matrix, i)->enabled_p && MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (desired_matrix, i)) <= yb) ++i; if (!MATRIX_ROW (desired_matrix, i)->enabled_p) return 0; last_new = i; /* Set last_old to the index + 1 of the last enabled row in the current matrix. We don't look at the enabled flag here because we plan to reuse part of the display even if other parts are disabled. */ i = first_old + 1; while (i < current_matrix->nrows - 1) { int bottom = MATRIX_ROW_BOTTOM_Y (MATRIX_ROW (current_matrix, i)); if (bottom <= yb) ++i; if (bottom >= yb) break; } last_old = i; /* Skip over rows equal at the bottom. */ i = last_new; j = last_old; while (i - 1 > first_new && j - 1 > first_old && MATRIX_ROW (current_matrix, i - 1)->enabled_p && (MATRIX_ROW (current_matrix, i - 1)->y == MATRIX_ROW (desired_matrix, j - 1)->y) && !MATRIX_ROW (desired_matrix, j - 1)->redraw_fringe_bitmaps_p && row_equal_p (w, MATRIX_ROW (desired_matrix, i - 1), MATRIX_ROW (current_matrix, j - 1), 1)) --i, --j; last_new = i; last_old = j; /* Nothing to do if all rows are equal. */ if (last_new == first_new) return 0; /* Reallocate vectors, tables etc. if necessary. */ if (current_matrix->nrows > old_lines_size) { old_lines_size = current_matrix->nrows; nbytes = old_lines_size * sizeof *old_lines; old_lines = (struct row_entry **) xrealloc (old_lines, nbytes); } if (desired_matrix->nrows > new_lines_size) { new_lines_size = desired_matrix->nrows; nbytes = new_lines_size * sizeof *new_lines; new_lines = (struct row_entry **) xrealloc (new_lines, nbytes); } n = desired_matrix->nrows + current_matrix->nrows; if (3 * n > row_table_size) { row_table_size = next_almost_prime (3 * n); nbytes = row_table_size * sizeof *row_table; row_table = (struct row_entry **) xrealloc (row_table, nbytes); bzero (row_table, nbytes); } if (n > row_entry_pool_size) { row_entry_pool_size = n; nbytes = row_entry_pool_size * sizeof *row_entry_pool; row_entry_pool = (struct row_entry *) xrealloc (row_entry_pool, nbytes); } if (desired_matrix->nrows > runs_size) { runs_size = desired_matrix->nrows; nbytes = runs_size * sizeof *runs; runs = (struct run **) xrealloc (runs, nbytes); nbytes = runs_size * sizeof *run_pool; run_pool = (struct run *) xrealloc (run_pool, nbytes); } nruns = run_idx = 0; row_entry_idx = 0; /* Add rows from the current and desired matrix to the hash table row_hash_table to be able to find equal ones quickly. */ for (i = first_old; i < last_old; ++i) { if (MATRIX_ROW (current_matrix, i)->enabled_p) { entry = add_row_entry (w, MATRIX_ROW (current_matrix, i)); old_lines[i] = entry; ++entry->old_uses; } else old_lines[i] = NULL; } for (i = first_new; i < last_new; ++i) { xassert (MATRIX_ROW_ENABLED_P (desired_matrix, i)); entry = add_row_entry (w, MATRIX_ROW (desired_matrix, i)); ++entry->new_uses; entry->new_line_number = i; new_lines[i] = entry; } /* Identify moves based on lines that are unique and equal in both matrices. */ for (i = first_old; i < last_old;) if (old_lines[i] && old_lines[i]->old_uses == 1 && old_lines[i]->new_uses == 1) { int j, k; int new_line = old_lines[i]->new_line_number; struct run *run = run_pool + run_idx++; /* Record move. */ run->current_vpos = i; run->current_y = MATRIX_ROW (current_matrix, i)->y; run->desired_vpos = new_line; run->desired_y = MATRIX_ROW (desired_matrix, new_line)->y; run->nrows = 1; run->height = MATRIX_ROW (current_matrix, i)->height; /* Extend backward. */ j = i - 1; k = new_line - 1; while (j > first_old && k > first_new && old_lines[j] == new_lines[k]) { int h = MATRIX_ROW (current_matrix, j)->height; --run->current_vpos; --run->desired_vpos; ++run->nrows; run->height += h; run->desired_y -= h; run->current_y -= h; --j, --k; } /* Extend forward. */ j = i + 1; k = new_line + 1; while (j < last_old && k < last_new && old_lines[j] == new_lines[k]) { int h = MATRIX_ROW (current_matrix, j)->height; ++run->nrows; run->height += h; ++j, ++k; } /* Insert run into list of all runs. Order runs by copied pixel lines. Note that we record runs that don't have to be copied because they are already in place. This is done because we can avoid calling update_window_line in this case. */ for (j = 0; j < nruns && runs[j]->height > run->height; ++j) ; for (k = nruns; k > j; --k) runs[k] = runs[k - 1]; runs[j] = run; ++nruns; i += run->nrows; } else ++i; /* Do the moves. Do it in a way that we don't overwrite something we want to copy later on. This is not solvable in general because there is only one display and we don't have a way to exchange areas on this display. Example: +-----------+ +-----------+ | A | | B | +-----------+ --> +-----------+ | B | | A | +-----------+ +-----------+ Instead, prefer bigger moves, and invalidate moves that would copy from where we copied to. */ for (i = 0; i < nruns; ++i) if (runs[i]->nrows > 0) { struct run *r = runs[i]; /* Copy on the display. */ if (r->current_y != r->desired_y) { rif->scroll_run_hook (w, r); /* Invalidate runs that copy from where we copied to. */ for (j = i + 1; j < nruns; ++j) { struct run *p = runs[j]; if ((p->current_y >= r->desired_y && p->current_y < r->desired_y + r->height) || (p->current_y + p->height >= r->desired_y && (p->current_y + p->height < r->desired_y + r->height))) p->nrows = 0; } } /* Assign matrix rows. */ for (j = 0; j < r->nrows; ++j) { struct glyph_row *from, *to; int to_overlapped_p; to = MATRIX_ROW (current_matrix, r->desired_vpos + j); from = MATRIX_ROW (desired_matrix, r->desired_vpos + j); to_overlapped_p = to->overlapped_p; if (!from->mode_line_p && !w->pseudo_window_p && (to->left_fringe_bitmap != from->left_fringe_bitmap || to->right_fringe_bitmap != from->right_fringe_bitmap || to->left_fringe_face_id != from->left_fringe_face_id || to->right_fringe_face_id != from->right_fringe_face_id || to->overlay_arrow_bitmap != from->overlay_arrow_bitmap)) from->redraw_fringe_bitmaps_p = 1; assign_row (to, from); to->enabled_p = 1, from->enabled_p = 0; to->overlapped_p = to_overlapped_p; } } /* Clear the hash table, for the next time. */ for (i = 0; i < row_entry_idx; ++i) row_table[row_entry_pool[i].bucket] = NULL; /* Value is > 0 to indicate that we scrolled the display. */ return nruns; } /************************************************************************ Frame-Based Updates ************************************************************************/ /* Update the desired frame matrix of frame F. FORCE_P non-zero means that the update should not be stopped by pending input. INHIBIT_HAIRY_ID_P non-zero means that scrolling should not be tried. Value is non-zero if update was stopped due to pending input. */ static int update_frame_1 (f, force_p, inhibit_id_p) struct frame *f; int force_p; int inhibit_id_p; { /* Frame matrices to work on. */ struct glyph_matrix *current_matrix = f->current_matrix; struct glyph_matrix *desired_matrix = f->desired_matrix; int i; int pause; int preempt_count = baud_rate / 2400 + 1; extern int input_pending; xassert (current_matrix && desired_matrix); if (baud_rate != FRAME_COST_BAUD_RATE (f)) calculate_costs (f); if (preempt_count <= 0) preempt_count = 1; if (redisplay_dont_pause) force_p = 1; else if (!force_p && detect_input_pending_ignore_squeezables ()) { pause = 1; goto do_pause; } /* If we cannot insert/delete lines, it's no use trying it. */ if (!line_ins_del_ok) inhibit_id_p = 1; /* See if any of the desired lines are enabled; don't compute for i/d line if just want cursor motion. */ for (i = 0; i < desired_matrix->nrows; i++) if (MATRIX_ROW_ENABLED_P (desired_matrix, i)) break; /* Try doing i/d line, if not yet inhibited. */ if (!inhibit_id_p && i < desired_matrix->nrows) force_p |= scrolling (f); /* Update the individual lines as needed. Do bottom line first. */ if (MATRIX_ROW_ENABLED_P (desired_matrix, desired_matrix->nrows - 1)) update_frame_line (f, desired_matrix->nrows - 1); /* Now update the rest of the lines. */ for (i = 0; i < desired_matrix->nrows - 1 && (force_p || !input_pending); i++) { if (MATRIX_ROW_ENABLED_P (desired_matrix, i)) { if (FRAME_TERMCAP_P (f)) { /* Flush out every so many lines. Also flush out if likely to have more than 1k buffered otherwise. I'm told that some telnet connections get really screwed by more than 1k output at once. */ int outq = PENDING_OUTPUT_COUNT (stdout); if (outq > 900 || (outq > 20 && ((i - 1) % preempt_count == 0))) { fflush (stdout); if (preempt_count == 1) { #ifdef EMACS_OUTQSIZE if (EMACS_OUTQSIZE (0, &outq) < 0) /* Probably not a tty. Ignore the error and reset the outq count. */ outq = PENDING_OUTPUT_COUNT (stdout); #endif outq *= 10; if (baud_rate <= outq && baud_rate > 0) sleep (outq / baud_rate); } } } if ((i - 1) % preempt_count == 0) detect_input_pending_ignore_squeezables (); update_frame_line (f, i); } } pause = (i < FRAME_LINES (f) - 1) ? i : 0; /* Now just clean up termcap drivers and set cursor, etc. */ if (!pause) { if ((cursor_in_echo_area /* If we are showing a message instead of the mini-buffer, show the cursor for the message instead of for the (now hidden) mini-buffer contents. */ || (EQ (minibuf_window, selected_window) && EQ (minibuf_window, echo_area_window) && !NILP (echo_area_buffer[0]))) /* These cases apply only to the frame that contains the active mini-buffer window. */ && FRAME_HAS_MINIBUF_P (f) && EQ (FRAME_MINIBUF_WINDOW (f), echo_area_window)) { int top = WINDOW_TOP_EDGE_LINE (XWINDOW (FRAME_MINIBUF_WINDOW (f))); int row, col; if (cursor_in_echo_area < 0) { /* Negative value of cursor_in_echo_area means put cursor at beginning of line. */ row = top; col = 0; } else { /* Positive value of cursor_in_echo_area means put cursor at the end of the prompt. If the mini-buffer is several lines high, find the last line that has any text on it. */ row = FRAME_LINES (f); do { --row; col = 0; if (MATRIX_ROW_ENABLED_P (current_matrix, row)) { /* Frame rows are filled up with spaces that must be ignored here. */ struct glyph_row *r = MATRIX_ROW (current_matrix, row); struct glyph *start = r->glyphs[TEXT_AREA]; struct glyph *last = start + r->used[TEXT_AREA]; while (last > start && (last - 1)->charpos < 0) --last; col = last - start; } } while (row > top && col == 0); /* Make sure COL is not out of range. */ if (col >= FRAME_CURSOR_X_LIMIT (f)) { /* If we have another row, advance cursor into it. */ if (row < FRAME_LINES (f) - 1) { col = FRAME_LEFT_SCROLL_BAR_COLS (f); row++; } /* Otherwise move it back in range. */ else col = FRAME_CURSOR_X_LIMIT (f) - 1; } } cursor_to (row, col); } else { /* We have only one cursor on terminal frames. Use it to display the cursor of the selected window. */ struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f)); if (w->cursor.vpos >= 0 /* The cursor vpos may be temporarily out of bounds in the following situation: There is one window, with the cursor in the lower half of it. The window is split, and a message causes a redisplay before a new cursor position has been computed. */ && w->cursor.vpos < WINDOW_TOTAL_LINES (w)) { int x = WINDOW_TO_FRAME_HPOS (w, w->cursor.hpos); int y = WINDOW_TO_FRAME_VPOS (w, w->cursor.vpos); if (INTEGERP (w->left_margin_cols)) x += XFASTINT (w->left_margin_cols); /* x = max (min (x, FRAME_TOTAL_COLS (f) - 1), 0); */ cursor_to (y, x); } } } do_pause: clear_desired_matrices (f); return pause; } /* Do line insertions/deletions on frame F for frame-based redisplay. */ int scrolling (frame) struct frame *frame; { int unchanged_at_top, unchanged_at_bottom; int window_size; int changed_lines; int *old_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int)); int *new_hash = (int *) alloca (FRAME_LINES (frame) * sizeof (int)); int *draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int)); int *old_draw_cost = (int *) alloca (FRAME_LINES (frame) * sizeof (int)); register int i; int free_at_end_vpos = FRAME_LINES (frame); struct glyph_matrix *current_matrix = frame->current_matrix; struct glyph_matrix *desired_matrix = frame->desired_matrix; if (!current_matrix) abort (); /* Compute hash codes of all the lines. Also calculate number of changed lines, number of unchanged lines at the beginning, and number of unchanged lines at the end. */ changed_lines = 0; unchanged_at_top = 0; unchanged_at_bottom = FRAME_LINES (frame); for (i = 0; i < FRAME_LINES (frame); i++) { /* Give up on this scrolling if some old lines are not enabled. */ if (!MATRIX_ROW_ENABLED_P (current_matrix, i)) return 0; old_hash[i] = line_hash_code (MATRIX_ROW (current_matrix, i)); if (! MATRIX_ROW_ENABLED_P (desired_matrix, i)) { /* This line cannot be redrawn, so don't let scrolling mess it. */ new_hash[i] = old_hash[i]; #define INFINITY 1000000 /* Taken from scroll.c */ draw_cost[i] = INFINITY; } else { new_hash[i] = line_hash_code (MATRIX_ROW (desired_matrix, i)); draw_cost[i] = line_draw_cost (desired_matrix, i); } if (old_hash[i] != new_hash[i]) { changed_lines++; unchanged_at_bottom = FRAME_LINES (frame) - i - 1; } else if (i == unchanged_at_top) unchanged_at_top++; old_draw_cost[i] = line_draw_cost (current_matrix, i); } /* If changed lines are few, don't allow preemption, don't scroll. */ if ((!scroll_region_ok && changed_lines < baud_rate / 2400) || unchanged_at_bottom == FRAME_LINES (frame)) return 1; window_size = (FRAME_LINES (frame) - unchanged_at_top - unchanged_at_bottom); if (scroll_region_ok) free_at_end_vpos -= unchanged_at_bottom; else if (memory_below_frame) free_at_end_vpos = -1; /* If large window, fast terminal and few lines in common between current frame and desired frame, don't bother with i/d calc. */ if (!scroll_region_ok && window_size >= 18 && baud_rate > 2400 && (window_size >= 10 * scrolling_max_lines_saved (unchanged_at_top, FRAME_LINES (frame) - unchanged_at_bottom, old_hash, new_hash, draw_cost))) return 0; if (window_size < 2) return 0; scrolling_1 (frame, window_size, unchanged_at_top, unchanged_at_bottom, draw_cost + unchanged_at_top - 1, old_draw_cost + unchanged_at_top - 1, old_hash + unchanged_at_top - 1, new_hash + unchanged_at_top - 1, free_at_end_vpos - unchanged_at_top); return 0; } /* Count the number of blanks at the start of the vector of glyphs R which is LEN glyphs long. */ static int count_blanks (r, len) struct glyph *r; int len; { int i; for (i = 0; i < len; ++i) if (!CHAR_GLYPH_SPACE_P (r[i])) break; return i; } /* Count the number of glyphs in common at the start of the glyph vectors STR1 and STR2. END1 is the end of STR1 and END2 is the end of STR2. Value is the number of equal glyphs equal at the start. */ static int count_match (str1, end1, str2, end2) struct glyph *str1, *end1, *str2, *end2; { struct glyph *p1 = str1; struct glyph *p2 = str2; while (p1 < end1 && p2 < end2 && GLYPH_CHAR_AND_FACE_EQUAL_P (p1, p2)) ++p1, ++p2; return p1 - str1; } /* Char insertion/deletion cost vector, from term.c */ extern int *char_ins_del_vector; #define char_ins_del_cost(f) (&char_ins_del_vector[FRAME_TOTAL_COLS((f))]) /* Perform a frame-based update on line VPOS in frame FRAME. */ static void update_frame_line (f, vpos) struct frame *f; int vpos; { struct glyph *obody, *nbody, *op1, *op2, *np1, *nend; int tem; int osp, nsp, begmatch, endmatch, olen, nlen; struct glyph_matrix *current_matrix = f->current_matrix; struct glyph_matrix *desired_matrix = f->desired_matrix; struct glyph_row *current_row = MATRIX_ROW (current_matrix, vpos); struct glyph_row *desired_row = MATRIX_ROW (desired_matrix, vpos); int must_write_whole_line_p; int write_spaces_p = must_write_spaces; int colored_spaces_p = (FACE_FROM_ID (f, DEFAULT_FACE_ID)->background != FACE_TTY_DEFAULT_BG_COLOR); if (colored_spaces_p) write_spaces_p = 1; /* Current row not enabled means it has unknown contents. We must write the whole desired line in that case. */ must_write_whole_line_p = !current_row->enabled_p; if (must_write_whole_line_p) { obody = 0; olen = 0; } else { obody = MATRIX_ROW_GLYPH_START (current_matrix, vpos); olen = current_row->used[TEXT_AREA]; /* Ignore trailing spaces, if we can. */ if (!write_spaces_p) while (olen > 0 && CHAR_GLYPH_SPACE_P (obody[olen-1])) olen--; } current_row->enabled_p = 1; current_row->used[TEXT_AREA] = desired_row->used[TEXT_AREA]; /* If desired line is empty, just clear the line. */ if (!desired_row->enabled_p) { nlen = 0; goto just_erase; } nbody = desired_row->glyphs[TEXT_AREA]; nlen = desired_row->used[TEXT_AREA]; nend = nbody + nlen; /* If display line has unknown contents, write the whole line. */ if (must_write_whole_line_p) { /* Ignore spaces at the end, if we can. */ if (!write_spaces_p) while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1])) --nlen; /* Write the contents of the desired line. */ if (nlen) { cursor_to (vpos, 0); write_glyphs (nbody, nlen); } /* Don't call clear_end_of_line if we already wrote the whole line. The cursor will not be at the right margin in that case but in the line below. */ if (nlen < FRAME_TOTAL_COLS (f)) { cursor_to (vpos, nlen); clear_end_of_line (FRAME_TOTAL_COLS (f)); } else /* Make sure we are in the right row, otherwise cursor movement with cmgoto might use `ch' in the wrong row. */ cursor_to (vpos, 0); make_current (desired_matrix, current_matrix, vpos); return; } /* Pretend trailing spaces are not there at all, unless for one reason or another we must write all spaces. */ if (!write_spaces_p) while (nlen > 0 && CHAR_GLYPH_SPACE_P (nbody[nlen - 1])) nlen--; /* If there's no i/d char, quickly do the best we can without it. */ if (!char_ins_del_ok) { int i, j; /* Find the first glyph in desired row that doesn't agree with a glyph in the current row, and write the rest from there on. */ for (i = 0; i < nlen; i++) { if (i >= olen || !GLYPH_EQUAL_P (nbody + i, obody + i)) { /* Find the end of the run of different glyphs. */ j = i + 1; while (j < nlen && (j >= olen || !GLYPH_EQUAL_P (nbody + j, obody + j) || CHAR_GLYPH_PADDING_P (nbody[j]))) ++j; /* Output this run of non-matching chars. */ cursor_to (vpos, i); write_glyphs (nbody + i, j - i); i = j - 1; /* Now find the next non-match. */ } } /* Clear the rest of the line, or the non-clear part of it. */ if (olen > nlen) { cursor_to (vpos, nlen); clear_end_of_line (olen); } /* Make current row = desired row. */ make_current (desired_matrix, current_matrix, vpos); return; } /* Here when CHAR_INS_DEL_OK != 0, i.e. we can insert or delete characters in a row. */ if (!olen) { /* If current line is blank, skip over initial spaces, if possible, and write the rest. */ if (write_spaces_p) nsp = 0; else nsp = count_blanks (nbody, nlen); if (nlen > nsp) { cursor_to (vpos, nsp); write_glyphs (nbody + nsp, nlen - nsp); } /* Exchange contents between current_frame and new_frame. */ make_current (desired_matrix, current_matrix, vpos); return; } /* Compute number of leading blanks in old and new contents. */ osp = count_blanks (obody, olen); nsp = (colored_spaces_p ? 0 : count_blanks (nbody, nlen)); /* Compute number of matching chars starting with first non-blank. */ begmatch = count_match (obody + osp, obody + olen, nbody + nsp, nbody + nlen); /* Spaces in new match implicit space past the end of old. */ /* A bug causing this to be a no-op was fixed in 18.29. */ if (!write_spaces_p && osp + begmatch == olen) { np1 = nbody + nsp; while (np1 + begmatch < nend && CHAR_GLYPH_SPACE_P (np1[begmatch])) ++begmatch; } /* Avoid doing insert/delete char just cause number of leading spaces differs when the following text does not match. */ if (begmatch == 0 && osp != nsp) osp = nsp = min (osp, nsp); /* Find matching characters at end of line */ op1 = obody + olen; np1 = nbody + nlen; op2 = op1 + begmatch - min (olen - osp, nlen - nsp); while (op1 > op2 && GLYPH_EQUAL_P (op1 - 1, np1 - 1)) { op1--; np1--; } endmatch = obody + olen - op1; /* tem gets the distance to insert or delete. endmatch is how many characters we save by doing so. Is it worth it? */ tem = (nlen - nsp) - (olen - osp); if (endmatch && tem && (!char_ins_del_ok || endmatch <= char_ins_del_cost (f)[tem])) endmatch = 0; /* nsp - osp is the distance to insert or delete. If that is nonzero, begmatch is known to be nonzero also. begmatch + endmatch is how much we save by doing the ins/del. Is it worth it? */ if (nsp != osp && (!char_ins_del_ok || begmatch + endmatch <= char_ins_del_cost (f)[nsp - osp])) { begmatch = 0; endmatch = 0; osp = nsp = min (osp, nsp); } /* Now go through the line, inserting, writing and deleting as appropriate. */ if (osp > nsp) { cursor_to (vpos, nsp); delete_glyphs (osp - nsp); } else if (nsp > osp) { /* If going to delete chars later in line and insert earlier in the line, must delete first to avoid losing data in the insert */ if (endmatch && nlen < olen + nsp - osp) { cursor_to (vpos, nlen - endmatch + osp - nsp); delete_glyphs (olen + nsp - osp - nlen); olen = nlen - (nsp - osp); } cursor_to (vpos, osp); insert_glyphs (0, nsp - osp); } olen += nsp - osp; tem = nsp + begmatch + endmatch; if (nlen != tem || olen != tem) { if (!endmatch || nlen == olen) { /* If new text being written reaches right margin, there is no need to do clear-to-eol at the end of this function (and it would not be safe, since cursor is not going to be "at the margin" after the text is done). */ if (nlen == FRAME_TOTAL_COLS (f)) olen = 0; /* Function write_glyphs is prepared to do nothing if passed a length <= 0. Check it here to avoid unnecessary cursor movement. */ if (nlen - tem > 0) { cursor_to (vpos, nsp + begmatch); write_glyphs (nbody + nsp + begmatch, nlen - tem); } } else if (nlen > olen) { /* Here, we used to have the following simple code: ---------------------------------------- write_glyphs (nbody + nsp + begmatch, olen - tem); insert_glyphs (nbody + nsp + begmatch + olen - tem, nlen - olen); ---------------------------------------- but it doesn't work if nbody[nsp + begmatch + olen - tem] is a padding glyph. */ int out = olen - tem; /* Columns to be overwritten originally. */ int del; cursor_to (vpos, nsp + begmatch); /* Calculate columns we can actually overwrite. */ while (CHAR_GLYPH_PADDING_P (nbody[nsp + begmatch + out])) out--; write_glyphs (nbody + nsp + begmatch, out); /* If we left columns to be overwritten, we must delete them. */ del = olen - tem - out; if (del > 0) delete_glyphs (del); /* At last, we insert columns not yet written out. */ insert_glyphs (nbody + nsp + begmatch + out, nlen - olen + del); olen = nlen; } else if (olen > nlen) { cursor_to (vpos, nsp + begmatch); write_glyphs (nbody + nsp + begmatch, nlen - tem); delete_glyphs (olen - nlen); olen = nlen; } } just_erase: /* If any unerased characters remain after the new line, erase them. */ if (olen > nlen) { cursor_to (vpos, nlen); clear_end_of_line (olen); } /* Exchange contents between current_frame and new_frame. */ make_current (desired_matrix, current_matrix, vpos); } /*********************************************************************** X/Y Position -> Buffer Position ***********************************************************************/ /* Determine what's under window-relative pixel position (*X, *Y). Return the object (string or buffer) that's there. Return in *POS the position in that object. Adjust *X and *Y to character positions. */ Lisp_Object buffer_posn_from_coords (w, x, y, pos, object, dx, dy, width, height) struct window *w; int *x, *y; struct display_pos *pos; Lisp_Object *object; int *dx, *dy; int *width, *height; { struct it it; struct buffer *old_current_buffer = current_buffer; struct text_pos startp; Lisp_Object string; struct glyph_row *row; #ifdef HAVE_WINDOW_SYSTEM struct image *img = 0; #endif int x0, x1; current_buffer = XBUFFER (w->buffer); SET_TEXT_POS_FROM_MARKER (startp, w->start); CHARPOS (startp) = min (ZV, max (BEGV, CHARPOS (startp))); BYTEPOS (startp) = min (ZV_BYTE, max (BEGV_BYTE, BYTEPOS (startp))); start_display (&it, w, startp); x0 = *x - WINDOW_LEFT_MARGIN_WIDTH (w); move_it_to (&it, -1, x0 + it.first_visible_x, *y, -1, MOVE_TO_X | MOVE_TO_Y); current_buffer = old_current_buffer; *dx = x0 + it.first_visible_x - it.current_x; *dy = *y - it.current_y; string = w->buffer; if (STRINGP (it.string)) string = it.string; *pos = it.current; #ifdef HAVE_WINDOW_SYSTEM if (it.what == IT_IMAGE) { if ((img = IMAGE_FROM_ID (it.f, it.image_id)) != NULL && !NILP (img->spec)) *object = img->spec; } #endif if (it.vpos < w->current_matrix->nrows && (row = MATRIX_ROW (w->current_matrix, it.vpos), row->enabled_p)) { if (it.hpos < row->used[TEXT_AREA]) { struct glyph *glyph = row->glyphs[TEXT_AREA] + it.hpos; #ifdef HAVE_WINDOW_SYSTEM if (img) { *dy -= row->ascent - glyph->ascent; *dx += glyph->slice.x; *dy += glyph->slice.y; /* Image slices positions are still relative to the entire image */ *width = img->width; *height = img->height; } else #endif { *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; } } else { *width = 0; *height = row->height; } } else { *width = *height = 0; } /* Add extra (default width) columns if clicked after EOL. */ x1 = max(0, it.current_x + it.pixel_width - it.first_visible_x); if (x0 > x1) it.hpos += (x0 - x1) / WINDOW_FRAME_COLUMN_WIDTH (w); *x = it.hpos; *y = it.vpos; return string; } /* Value is the string under window-relative coordinates X/Y in the mode line or header line (PART says which) of window W, or nil if none. *CHARPOS is set to the position in the string returned. */ Lisp_Object mode_line_string (w, part, x, y, charpos, object, dx, dy, width, height) struct window *w; enum window_part part; int *x, *y; int *charpos; Lisp_Object *object; int *dx, *dy; int *width, *height; { struct glyph_row *row; struct glyph *glyph, *end; int x0, y0; Lisp_Object string = Qnil; if (part == ON_MODE_LINE) row = MATRIX_MODE_LINE_ROW (w->current_matrix); else row = MATRIX_HEADER_LINE_ROW (w->current_matrix); y0 = *y - row->y; *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix); if (row->mode_line_p && row->enabled_p) { /* Find the glyph under X. If we find one with a string object, it's the one we were looking for. */ glyph = row->glyphs[TEXT_AREA]; end = glyph + row->used[TEXT_AREA]; for (x0 = *x; glyph < end && x0 >= glyph->pixel_width; ++glyph) x0 -= glyph->pixel_width; *x = glyph - row->glyphs[TEXT_AREA]; if (glyph < end) { string = glyph->object; *charpos = glyph->charpos; *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; #ifdef HAVE_WINDOW_SYSTEM if (glyph->type == IMAGE_GLYPH) { struct image *img; img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id); if (img != NULL) *object = img->spec; y0 -= row->ascent - glyph->ascent; } #endif } else { /* Add extra (default width) columns if clicked after EOL. */ *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w); *width = 0; *height = row->height; } } else { *x = 0; x0 = 0; *width = *height = 0; } *dx = x0; *dy = y0; return string; } /* Value is the string under window-relative coordinates X/Y in either marginal area, or nil if none. *CHARPOS is set to the position in the string returned. */ Lisp_Object marginal_area_string (w, part, x, y, charpos, object, dx, dy, width, height) struct window *w; enum window_part part; int *x, *y; int *charpos; Lisp_Object *object; int *dx, *dy; int *width, *height; { struct glyph_row *row = w->current_matrix->rows; struct glyph *glyph, *end; int x0, y0, i, wy = *y; int area; Lisp_Object string = Qnil; if (part == ON_LEFT_MARGIN) area = LEFT_MARGIN_AREA; else if (part == ON_RIGHT_MARGIN) area = RIGHT_MARGIN_AREA; else abort (); for (i = 0; row->enabled_p && i < w->current_matrix->nrows; ++i, ++row) if (wy >= row->y && wy < MATRIX_ROW_BOTTOM_Y (row)) break; y0 = *y - row->y; *y = row - MATRIX_FIRST_TEXT_ROW (w->current_matrix); if (row->enabled_p) { /* Find the glyph under X. If we find one with a string object, it's the one we were looking for. */ if (area == RIGHT_MARGIN_AREA) x0 = ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w) ? WINDOW_LEFT_FRINGE_WIDTH (w) : WINDOW_TOTAL_FRINGE_WIDTH (w)) + window_box_width (w, LEFT_MARGIN_AREA) + window_box_width (w, TEXT_AREA)); else x0 = (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w) ? WINDOW_LEFT_FRINGE_WIDTH (w) : 0); glyph = row->glyphs[area]; end = glyph + row->used[area]; for (x0 = *x - x0; glyph < end && x0 >= glyph->pixel_width; ++glyph) x0 -= glyph->pixel_width; *x = glyph - row->glyphs[area]; if (glyph < end) { string = glyph->object; *charpos = glyph->charpos; *width = glyph->pixel_width; *height = glyph->ascent + glyph->descent; #ifdef HAVE_WINDOW_SYSTEM if (glyph->type == IMAGE_GLYPH) { struct image *img; img = IMAGE_FROM_ID (WINDOW_XFRAME (w), glyph->u.img_id); if (img != NULL) *object = img->spec; y0 -= row->ascent - glyph->ascent; x0 += glyph->slice.x; y0 += glyph->slice.y; } #endif } else { /* Add extra (default width) columns if clicked after EOL. */ *x += x0 / WINDOW_FRAME_COLUMN_WIDTH (w); *width = 0; *height = row->height; } } else { x0 = 0; *x = 0; *width = *height = 0; } *dx = x0; *dy = y0; return string; } /*********************************************************************** Changing Frame Sizes ***********************************************************************/ #ifdef SIGWINCH SIGTYPE window_change_signal (signalnum) /* If we don't have an argument, */ int signalnum; /* some compilers complain in signal calls. */ { int width, height; #ifndef USE_CRT_DLL extern int errno; #endif int old_errno = errno; signal (SIGWINCH, window_change_signal); SIGNAL_THREAD_CHECK (signalnum); get_frame_size (&width, &height); /* The frame size change obviously applies to a termcap-controlled frame. Find such a frame in the list, and assume it's the only one (since the redisplay code always writes to stdout, not a FILE * specified in the frame structure). Record the new size, but don't reallocate the data structures now. Let that be done later outside of the signal handler. */ { Lisp_Object tail, frame; FOR_EACH_FRAME (tail, frame) { if (FRAME_TERMCAP_P (XFRAME (frame))) { change_frame_size (XFRAME (frame), height, width, 0, 1, 0); break; } } } errno = old_errno; } #endif /* SIGWINCH */ /* Do any change in frame size that was requested by a signal. SAFE non-zero means this function is called from a place where it is safe to change frame sizes while a redisplay is in progress. */ void do_pending_window_change (safe) int safe; { /* If window_change_signal should have run before, run it now. */ if (redisplaying_p && !safe) return; while (delayed_size_change) { Lisp_Object tail, frame; delayed_size_change = 0; FOR_EACH_FRAME (tail, frame) { struct frame *f = XFRAME (frame); if (f->new_text_lines != 0 || f->new_text_cols != 0) change_frame_size (f, f->new_text_lines, f->new_text_cols, 0, 0, safe); } } } /* Change the frame height and/or width. Values may be given as zero to indicate no change is to take place. If DELAY is non-zero, then assume we're being called from a signal handler, and queue the change for later - perhaps the next redisplay. Since this tries to resize windows, we can't call it from a signal handler. SAFE non-zero means this function is called from a place where it's safe to change frame sizes while a redisplay is in progress. */ void change_frame_size (f, newheight, newwidth, pretend, delay, safe) register struct frame *f; int newheight, newwidth, pretend, delay, safe; { Lisp_Object tail, frame; if (! FRAME_WINDOW_P (f)) { /* When using termcap, or on MS-DOS, all frames use the same screen, so a change in size affects all frames. */ FOR_EACH_FRAME (tail, frame) if (! FRAME_WINDOW_P (XFRAME (frame))) change_frame_size_1 (XFRAME (frame), newheight, newwidth, pretend, delay, safe); } else change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe); } static void change_frame_size_1 (f, newheight, newwidth, pretend, delay, safe) register struct frame *f; int newheight, newwidth, pretend, delay, safe; { int new_frame_total_cols; int count = SPECPDL_INDEX (); /* If we can't deal with the change now, queue it for later. */ if (delay || (redisplaying_p && !safe)) { f->new_text_lines = newheight; f->new_text_cols = newwidth; delayed_size_change = 1; return; } /* This size-change overrides any pending one for this frame. */ f->new_text_lines = 0; f->new_text_cols = 0; /* If an argument is zero, set it to the current value. */ if (newheight == 0) newheight = FRAME_LINES (f); if (newwidth == 0) newwidth = FRAME_COLS (f); /* Compute width of windows in F. This is the width of the frame without vertical scroll bars. */ new_frame_total_cols = FRAME_TOTAL_COLS_ARG (f, newwidth); /* Round up to the smallest acceptable size. */ check_frame_size (f, &newheight, &newwidth); /* If we're not changing the frame size, quit now. */ if (newheight == FRAME_LINES (f) && new_frame_total_cols == FRAME_TOTAL_COLS (f)) return; BLOCK_INPUT; #ifdef MSDOS /* We only can set screen dimensions to certain values supported by our video hardware. Try to find the smallest size greater or equal to the requested dimensions. */ dos_set_window_size (&newheight, &newwidth); #endif if (newheight != FRAME_LINES (f)) { if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f)) { /* Frame has both root and mini-buffer. */ XSETFASTINT (XWINDOW (FRAME_ROOT_WINDOW (f))->top_line, FRAME_TOP_MARGIN (f)); set_window_height (FRAME_ROOT_WINDOW (f), (newheight - 1 - FRAME_TOP_MARGIN (f)), 0); XSETFASTINT (XWINDOW (FRAME_MINIBUF_WINDOW (f))->top_line, newheight - 1); set_window_height (FRAME_MINIBUF_WINDOW (f), 1, 0); } else /* Frame has just one top-level window. */ set_window_height (FRAME_ROOT_WINDOW (f), newheight - FRAME_TOP_MARGIN (f), 0); if (FRAME_TERMCAP_P (f) && !pretend) FrameRows = newheight; } if (new_frame_total_cols != FRAME_TOTAL_COLS (f)) { set_window_width (FRAME_ROOT_WINDOW (f), new_frame_total_cols, 0); if (FRAME_HAS_MINIBUF_P (f)) set_window_width (FRAME_MINIBUF_WINDOW (f), new_frame_total_cols, 0); if (FRAME_TERMCAP_P (f) && !pretend) FrameCols = newwidth; if (WINDOWP (f->tool_bar_window)) XSETFASTINT (XWINDOW (f->tool_bar_window)->total_cols, newwidth); } FRAME_LINES (f) = newheight; SET_FRAME_COLS (f, newwidth); { struct window *w = XWINDOW (FRAME_SELECTED_WINDOW (f)); int text_area_x, text_area_y, text_area_width, text_area_height; window_box (w, TEXT_AREA, &text_area_x, &text_area_y, &text_area_width, &text_area_height); if (w->cursor.x >= text_area_x + text_area_width) w->cursor.hpos = w->cursor.x = 0; if (w->cursor.y >= text_area_y + text_area_height) w->cursor.vpos = w->cursor.y = 0; } adjust_glyphs (f); calculate_costs (f); SET_FRAME_GARBAGED (f); f->resized_p = 1; UNBLOCK_INPUT; record_unwind_protect (Fset_buffer, Fcurrent_buffer ()); /* This isn't quite a no-op: it runs window-configuration-change-hook. */ Fset_window_buffer (FRAME_SELECTED_WINDOW (f), XWINDOW (FRAME_SELECTED_WINDOW (f))->buffer, Qt); unbind_to (count, Qnil); } /*********************************************************************** Terminal Related Lisp Functions ***********************************************************************/ DEFUN ("open-termscript", Fopen_termscript, Sopen_termscript, 1, 1, "FOpen termscript file: ", doc: /* Start writing all terminal output to FILE as well as the terminal. FILE = nil means just close any termscript file currently open. */) (file) Lisp_Object file; { if (termscript != 0) fclose (termscript); termscript = 0; if (! NILP (file)) { file = Fexpand_file_name (file, Qnil); termscript = fopen (SDATA (file), "w"); if (termscript == 0) report_file_error ("Opening termscript", Fcons (file, Qnil)); } return Qnil; } DEFUN ("send-string-to-terminal", Fsend_string_to_terminal, Ssend_string_to_terminal, 1, 1, 0, doc: /* Send STRING to the terminal without alteration. Control characters in STRING will have terminal-dependent effects. */) (string) Lisp_Object string; { /* ??? Perhaps we should do something special for multibyte strings here. */ CHECK_STRING (string); fwrite (SDATA (string), 1, SBYTES (string), stdout); fflush (stdout); if (termscript) { fwrite (SDATA (string), 1, SBYTES (string), termscript); fflush (termscript); } return Qnil; } DEFUN ("ding", Fding, Sding, 0, 1, 0, doc: /* Beep, or flash the screen. Also, unless an argument is given, terminate any keyboard macro currently executing. */) (arg) Lisp_Object arg; { if (!NILP (arg)) { if (noninteractive) putchar (07); else ring_bell (); fflush (stdout); } else bitch_at_user (); return Qnil; } void bitch_at_user () { if (noninteractive) putchar (07); else if (!INTERACTIVE) /* Stop executing a keyboard macro. */ error ("Keyboard macro terminated by a command ringing the bell"); else ring_bell (); fflush (stdout); } /*********************************************************************** Sleeping, Waiting ***********************************************************************/ DEFUN ("sleep-for", Fsleep_for, Ssleep_for, 1, 2, 0, doc: /* Pause, without updating display, for SECONDS seconds. SECONDS may be a floating-point value, meaning that you can wait for a fraction of a second. Optional second arg MILLISECONDS specifies an additional wait period, in milliseconds; this may be useful if your Emacs was built without floating point support. \(Not all operating systems support waiting for a fraction of a second.) */) (seconds, milliseconds) Lisp_Object seconds, milliseconds; { int sec, usec; if (NILP (milliseconds)) XSETINT (milliseconds, 0); else CHECK_NUMBER (milliseconds); usec = XINT (milliseconds) * 1000; { double duration = extract_float (seconds); sec = (int) duration; usec += (duration - sec) * 1000000; } #ifndef EMACS_HAS_USECS if (sec == 0 && usec != 0) error ("Millisecond `sleep-for' not supported on %s", SYSTEM_TYPE); #endif /* Assure that 0 <= usec < 1000000. */ if (usec < 0) { /* We can't rely on the rounding being correct if usec is negative. */ if (-1000000 < usec) sec--, usec += 1000000; else sec -= -usec / 1000000, usec = 1000000 - (-usec % 1000000); } else sec += usec / 1000000, usec %= 1000000; if (sec < 0 || (sec == 0 && usec == 0)) return Qnil; wait_reading_process_output (sec, usec, 0, 0, Qnil, NULL, 0); return Qnil; } /* This is just like wait_reading_process_output, except that it does the redisplay. It's also much like Fsit_for, except that it can be used for waiting for input as well. */ Lisp_Object sit_for (sec, usec, reading, display, initial_display) int sec, usec, reading, display, initial_display; { swallow_events (display); if (detect_input_pending_run_timers (display) || !NILP (Vexecuting_kbd_macro)) return Qnil; if (initial_display) redisplay_preserve_echo_area (2); if (sec == 0 && usec == 0) return Qt; #ifdef SIGIO gobble_input (0); #endif wait_reading_process_output (sec, usec, reading ? -1 : 1, display, Qnil, NULL, 0); return detect_input_pending () ? Qnil : Qt; } DEFUN ("sit-for", Fsit_for, Ssit_for, 1, 3, 0, doc: /* Perform redisplay, then wait for SECONDS seconds or until input is available. SECONDS may be a floating-point value, meaning that you can wait for a fraction of a second. \(Not all operating systems support waiting for a fraction of a second.) Optional arg NODISP non-nil means don't redisplay, just wait for input. Redisplay is preempted as always if input arrives, and does not happen if input is available before it starts. Value is t if waited the full time with no input arriving. An obsolete but still supported form is \(sit-for SECONDS &optional MILLISECONDS NODISP) Where the optional arg MILLISECONDS specifies an additional wait period, in milliseconds; this was useful when Emacs was built without floating point support. usage: (sit-for SECONDS &optional NODISP OLD-NODISP) */) /* The `old-nodisp' stuff is there so that the arglist has the correct length. Otherwise, `defdvice' will redefine it with fewer args. */ (seconds, milliseconds, nodisp) Lisp_Object seconds, milliseconds, nodisp; { int sec, usec; if (NILP (nodisp) && !NUMBERP (milliseconds)) { /* New style. */ nodisp = milliseconds; milliseconds = Qnil; } if (NILP (milliseconds)) XSETINT (milliseconds, 0); else CHECK_NUMBER (milliseconds); usec = XINT (milliseconds) * 1000; { double duration = extract_float (seconds); sec = (int) duration; usec += (duration - sec) * 1000000; } #ifndef EMACS_HAS_USECS if (usec != 0 && sec == 0) error ("Millisecond `sit-for' not supported on %s", SYSTEM_TYPE); #endif return sit_for (sec, usec, 0, NILP (nodisp), NILP (nodisp)); } /*********************************************************************** Other Lisp Functions ***********************************************************************/ /* A vector of size >= 2 * NFRAMES + 3 * NBUFFERS + 1, containing the session's frames, frame names, buffers, buffer-read-only flags, and buffer-modified-flags. */ static Lisp_Object frame_and_buffer_state; DEFUN ("frame-or-buffer-changed-p", Fframe_or_buffer_changed_p, Sframe_or_buffer_changed_p, 0, 1, 0, doc: /* Return non-nil if the frame and buffer state appears to have changed. VARIABLE is a variable name whose value is either nil or a state vector that will be updated to contain all frames and buffers, aside from buffers whose names start with space, along with the buffers' read-only and modified flags. This allows a fast check to see whether buffer menus might need to be recomputed. If this function returns non-nil, it updates the internal vector to reflect the current state. If VARIABLE is nil, an internal variable is used. Users should not pass nil for VARIABLE. */) (variable) Lisp_Object variable; { Lisp_Object state, tail, frame, buf; Lisp_Object *vecp, *end; int n; if (! NILP (variable)) { CHECK_SYMBOL (variable); state = Fsymbol_value (variable); if (! VECTORP (state)) goto changed; } else state = frame_and_buffer_state; vecp = XVECTOR (state)->contents; end = vecp + XVECTOR (state)->size; FOR_EACH_FRAME (tail, frame) { if (vecp == end) goto changed; if (!EQ (*vecp++, frame)) goto changed; if (vecp == end) goto changed; if (!EQ (*vecp++, XFRAME (frame)->name)) goto changed; } /* Check that the buffer info matches. */ for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail)) { buf = XCDR (XCAR (tail)); /* Ignore buffers that aren't included in buffer lists. */ if (SREF (XBUFFER (buf)->name, 0) == ' ') continue; if (vecp == end) goto changed; if (!EQ (*vecp++, buf)) goto changed; if (vecp == end) goto changed; if (!EQ (*vecp++, XBUFFER (buf)->read_only)) goto changed; if (vecp == end) goto changed; if (!EQ (*vecp++, Fbuffer_modified_p (buf))) goto changed; } if (vecp == end) goto changed; /* Detect deletion of a buffer at the end of the list. */ if (EQ (*vecp, Qlambda)) return Qnil; /* Come here if we decide the data has changed. */ changed: /* Count the size we will need. Start with 1 so there is room for at least one lambda at the end. */ n = 1; FOR_EACH_FRAME (tail, frame) n += 2; for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail)) n += 3; /* Reallocate the vector if data has grown to need it, or if it has shrunk a lot. */ if (! VECTORP (state) || n > XVECTOR (state)->size || n + 20 < XVECTOR (state)->size / 2) /* Add 20 extra so we grow it less often. */ { state = Fmake_vector (make_number (n + 20), Qlambda); if (! NILP (variable)) Fset (variable, state); else frame_and_buffer_state = state; } /* Record the new data in the (possibly reallocated) vector. */ vecp = XVECTOR (state)->contents; FOR_EACH_FRAME (tail, frame) { *vecp++ = frame; *vecp++ = XFRAME (frame)->name; } for (tail = Vbuffer_alist; CONSP (tail); tail = XCDR (tail)) { buf = XCDR (XCAR (tail)); /* Ignore buffers that aren't included in buffer lists. */ if (SREF (XBUFFER (buf)->name, 0) == ' ') continue; *vecp++ = buf; *vecp++ = XBUFFER (buf)->read_only; *vecp++ = Fbuffer_modified_p (buf); } /* Fill up the vector with lambdas (always at least one). */ *vecp++ = Qlambda; while (vecp - XVECTOR (state)->contents < XVECTOR (state)->size) *vecp++ = Qlambda; /* Make sure we didn't overflow the vector. */ if (vecp - XVECTOR (state)->contents > XVECTOR (state)->size) abort (); return Qt; } /*********************************************************************** Initialization ***********************************************************************/ char *terminal_type; /* Initialization done when Emacs fork is started, before doing stty. Determine terminal type and set terminal_driver. Then invoke its decoding routine to set up variables in the terminal package. */ void init_display () { #ifdef HAVE_X_WINDOWS extern int display_arg; #endif /* Construct the space glyph. */ space_glyph.type = CHAR_GLYPH; SET_CHAR_GLYPH_FROM_GLYPH (space_glyph, ' '); space_glyph.charpos = -1; meta_key = 0; inverse_video = 0; cursor_in_echo_area = 0; terminal_type = (char *) 0; /* Now is the time to initialize this; it's used by init_sys_modes during startup. */ Vwindow_system = Qnil; /* If the user wants to use a window system, we shouldn't bother initializing the terminal. This is especially important when the terminal is so dumb that emacs gives up before and doesn't bother using the window system. If the DISPLAY environment variable is set and nonempty, try to use X, and die with an error message if that doesn't work. */ #ifdef HAVE_X_WINDOWS if (! inhibit_window_system && ! display_arg) { char *display; #ifdef VMS display = getenv ("DECW$DISPLAY"); #else display = getenv ("DISPLAY"); #endif display_arg = (display != 0 && *display != 0); if (display_arg && !x_display_ok (display)) { fprintf (stderr, "Display %s unavailable, simulating -nw\n", display); inhibit_window_system = 1; } } if (!inhibit_window_system && display_arg #ifndef CANNOT_DUMP && initialized #endif ) { Vwindow_system = intern ("x"); #ifdef HAVE_X11 Vwindow_system_version = make_number (11); #else Vwindow_system_version = make_number (10); #endif #if defined (GNU_LINUX) && defined (HAVE_LIBNCURSES) /* In some versions of ncurses, tputs crashes if we have not called tgetent. So call tgetent. */ { char b[2044]; tgetent (b, "xterm");} #endif adjust_frame_glyphs_initially (); return; } #endif /* HAVE_X_WINDOWS */ #ifdef HAVE_NTGUI if (!inhibit_window_system) { Vwindow_system = intern ("w32"); Vwindow_system_version = make_number (1); adjust_frame_glyphs_initially (); return; } #endif /* HAVE_NTGUI */ #ifdef MAC_OS if (!inhibit_window_system) { Vwindow_system = intern ("mac"); Vwindow_system_version = make_number (1); adjust_frame_glyphs_initially (); return; } #endif /* MAC_OS */ /* If no window system has been specified, try to use the terminal. */ if (! isatty (0)) { fatal ("standard input is not a tty"); exit (1); } /* Look at the TERM variable. */ terminal_type = (char *) getenv ("TERM"); if (!terminal_type) { #ifdef VMS fprintf (stderr, "Please specify your terminal type.\n\ For types defined in VMS, use set term /device=TYPE.\n\ For types not defined in VMS, use define emacs_term \"TYPE\".\n\ \(The quotation marks are necessary since terminal types are lower case.)\n"); #else fprintf (stderr, "Please set the environment variable TERM; see tset(1).\n"); #endif exit (1); } #ifdef VMS /* VMS DCL tends to up-case things, so down-case term type. Hardly any uppercase letters in terminal types; should be none. */ { char *new = (char *) xmalloc (strlen (terminal_type) + 1); char *p; strcpy (new, terminal_type); for (p = new; *p; p++) if (isupper (*p)) *p = tolower (*p); terminal_type = new; } #endif /* VMS */ term_init (terminal_type); { struct frame *sf = SELECTED_FRAME (); int width = FRAME_TOTAL_COLS (sf); int height = FRAME_LINES (sf); unsigned int total_glyphs = height * (width + 2) * sizeof (struct glyph); /* If these sizes are so big they cause overflow, just ignore the change. It's not clear what better we could do. */ if (total_glyphs / sizeof (struct glyph) / height != width + 2) fatal ("screen size %dx%d too big", width, height); } adjust_frame_glyphs_initially (); calculate_costs (XFRAME (selected_frame)); #ifdef SIGWINCH #ifndef CANNOT_DUMP if (initialized) #endif /* CANNOT_DUMP */ signal (SIGWINCH, window_change_signal); #endif /* SIGWINCH */ /* Set up faces of the initial terminal frame of a dumped Emacs. */ if (initialized && !noninteractive #ifdef MSDOS /* The MSDOS terminal turns on its ``window system'' relatively late into the startup, so we cannot do the frame faces' initialization just yet. It will be done later by pc-win.el and internal_terminal_init. */ && (strcmp (terminal_type, "internal") != 0 || inhibit_window_system) #endif && NILP (Vwindow_system)) { /* For the initial frame, we don't have any way of knowing what are the foreground and background colors of the terminal. */ struct frame *sf = SELECTED_FRAME(); FRAME_FOREGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_FG_COLOR; FRAME_BACKGROUND_PIXEL (sf) = FACE_TTY_DEFAULT_BG_COLOR; call0 (intern ("tty-set-up-initial-frame-faces")); } } /*********************************************************************** Blinking cursor ***********************************************************************/ DEFUN ("internal-show-cursor", Finternal_show_cursor, Sinternal_show_cursor, 2, 2, 0, doc: /* Set the cursor-visibility flag of WINDOW to SHOW. WINDOW nil means use the selected window. SHOW non-nil means show a cursor in WINDOW in the next redisplay. SHOW nil means don't show a cursor. */) (window, show) Lisp_Object window, show; { /* Don't change cursor state while redisplaying. This could confuse output routines. */ if (!redisplaying_p) { if (NILP (window)) window = selected_window; else CHECK_WINDOW (window); XWINDOW (window)->cursor_off_p = NILP (show); } return Qnil; } DEFUN ("internal-show-cursor-p", Finternal_show_cursor_p, Sinternal_show_cursor_p, 0, 1, 0, doc: /* Value is non-nil if next redisplay will display a cursor in WINDOW. WINDOW nil or omitted means report on the selected window. */) (window) Lisp_Object window; { struct window *w; if (NILP (window)) window = selected_window; else CHECK_WINDOW (window); w = XWINDOW (window); return w->cursor_off_p ? Qnil : Qt; } /*********************************************************************** Initialization ***********************************************************************/ void syms_of_display () { defsubr (&Sredraw_frame); defsubr (&Sredraw_display); defsubr (&Sframe_or_buffer_changed_p); defsubr (&Sopen_termscript); defsubr (&Sding); defsubr (&Ssit_for); defsubr (&Ssleep_for); defsubr (&Ssend_string_to_terminal); defsubr (&Sinternal_show_cursor); defsubr (&Sinternal_show_cursor_p); #if GLYPH_DEBUG defsubr (&Sdump_redisplay_history); #endif frame_and_buffer_state = Fmake_vector (make_number (20), Qlambda); staticpro (&frame_and_buffer_state); Qdisplay_table = intern ("display-table"); staticpro (&Qdisplay_table); Qredisplay_dont_pause = intern ("redisplay-dont-pause"); staticpro (&Qredisplay_dont_pause); DEFVAR_INT ("baud-rate", &baud_rate, doc: /* *The output baud rate of the terminal. On most systems, changing this value will affect the amount of padding and the other strategic decisions made during redisplay. */); DEFVAR_BOOL ("inverse-video", &inverse_video, doc: /* *Non-nil means invert the entire frame display. This means everything is in inverse video which otherwise would not be. */); DEFVAR_BOOL ("visible-bell", &visible_bell, doc: /* *Non-nil means try to flash the frame to represent a bell. See also `ring-bell-function'. */); DEFVAR_BOOL ("no-redraw-on-reenter", &no_redraw_on_reenter, doc: /* *Non-nil means no need to redraw entire frame after suspending. A non-nil value is useful if the terminal can automatically preserve Emacs's frame display when you reenter Emacs. It is up to you to set this variable if your terminal can do that. */); DEFVAR_LISP ("window-system", &Vwindow_system, doc: /* Name of window system that Emacs is displaying through. The value is a symbol--for instance, `x' for X windows. The value is nil if Emacs is using a text-only terminal. */); DEFVAR_LISP ("window-system-version", &Vwindow_system_version, doc: /* The version number of the window system in use. For X windows, this is 10 or 11. */); DEFVAR_BOOL ("cursor-in-echo-area", &cursor_in_echo_area, doc: /* Non-nil means put cursor in minibuffer, at end of any message there. */); DEFVAR_LISP ("glyph-table", &Vglyph_table, doc: /* Table defining how to output a glyph code to the frame. If not nil, this is a vector indexed by glyph code to define the glyph. Each element can be: integer: a glyph code which this glyph is an alias for. string: output this glyph using that string (not impl. in X windows). nil: this glyph mod 524288 is the code of a character to output, and this glyph / 524288 is the face number (see `face-id') to use while outputting it. */); Vglyph_table = Qnil; DEFVAR_LISP ("standard-display-table", &Vstandard_display_table, doc: /* Display table to use for buffers that specify none. See `buffer-display-table' for more information. */); Vstandard_display_table = Qnil; DEFVAR_BOOL ("redisplay-dont-pause", &redisplay_dont_pause, doc: /* *Non-nil means update isn't paused when input is detected. */); redisplay_dont_pause = 0; /* Initialize `window-system', unless init_display already decided it. */ #ifdef CANNOT_DUMP if (noninteractive) #endif { Vwindow_system = Qnil; Vwindow_system_version = Qnil; } } /* arch-tag: 8d812b1f-04a2-4195-a9c4-381f8457a413 (do not change this comment) */