summaryrefslogtreecommitdiff
path: root/lisp/emacs-lisp/pp.el
blob: 1d7220514064a343a756a0e202aed05356227418 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
;;; pp.el --- pretty printer for Emacs Lisp  -*- lexical-binding: t -*-

;; Copyright (C) 1989, 1993, 2001-2024 Free Software Foundation, Inc.

;; Author: Randal Schwartz <merlyn@stonehenge.com>
;; Keywords: lisp

;; This file is part of GNU Emacs.

;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.

;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
;; GNU General Public License for more details.

;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs.  If not, see <https://www.gnu.org/licenses/>.

;;; Commentary:

;;; Code:

(require 'cl-lib)

(defgroup pp nil
  "Pretty printer for Emacs Lisp."
  :prefix "pp-"
  :group 'lisp)

(defcustom pp-escape-newlines t
  "Value of `print-escape-newlines' used by pp-* functions."
  :type 'boolean)

(defcustom pp-max-width t
  "Max width to use when formatting.
If nil, there's no max width.  If t, use the window width.
Otherwise this should be a number."
  :type '(choice (const :tag "none" nil)
                 (const :tag "window width" t)
                 number)
  :version "29.1")

(defcustom pp-use-max-width nil
  "If non-nil, `pp'-related functions will try to fold lines.
The target width is given by the `pp-max-width' variable.
Note that this could slow down `pp' considerably when formatting
large lists."
  :type 'boolean
  :version "29.1")
(make-obsolete-variable 'pp-use-max-width 'pp-default-function "30.1")

(defcustom pp-default-function #'pp-fill
  ;; FIXME: The best pretty printer to use depends on the use-case
  ;; so maybe we should allow callers to specify what they want (maybe with
  ;; options like `fast', `compact', `code', `data', ...) and these
  ;; can then be mapped to actual pretty-printing algorithms.
  ;; Then again, callers can just directly call the corresponding function.
  "Function that `pp' should dispatch to for pretty printing.
That function can be called in one of two ways:
- with a single argument, which it should insert and pretty-print at point.
- with two arguments which delimit a region containing Lisp sexps
  which should be pretty-printed.
In both cases, the function can presume that the buffer is setup for
Lisp syntax."
  :type '(choice
          (const :tag "Fit within `fill-column'" pp-fill)
          (const :tag "Emacs<29 algorithm, fast and good enough" pp-28)
          (const :tag "Work hard for code (slow on large inputs)"
                 pp-emacs-lisp-code)
          (const :tag "`pp-emacs-lisp-code' if `pp-use-max-width' else `pp-28'"
                 pp-29)
          function)
  :version "30.1")

(defvar pp--inhibit-function-formatting nil)

;; There are basically two APIs for a pretty-printing function:
;;
;; - either the function takes an object (and prints it in addition to
;;   prettifying it).
;; - or the function takes a region containing an already printed object
;;   and prettifies its content.
;;
;; `pp--object' and `pp--region' are helper functions to convert one
;; API to the other.


(defun pp--object (object region-function)
  "Pretty-print OBJECT at point.
The prettifying is done by REGION-FUNCTION which is
called with two positions as arguments and should fold lines
within that region.  Returns the result as a string."
  (let ((print-escape-newlines pp-escape-newlines)
        (print-quoted t)
        (beg (point)))
    ;; FIXME: In many cases it would be preferable to use `cl-prin1' here.
    (prin1 object (current-buffer))
    (funcall region-function beg (point))))

(defun pp--region (beg end object-function)
  "Pretty-print the object(s) contained within BEG..END.
OBJECT-FUNCTION is called with a single object as argument
and should pretty print it at point into the current buffer."
  (save-excursion
    (with-restriction beg end
      (goto-char (point-min))
      (while
          (progn
            ;; We'll throw away all the comments within objects, but let's
            ;; try at least to preserve the comments between objects.
            (forward-comment (point-max))
            (let ((beg (point))
                  (object (ignore-error end-of-buffer
                              (list (read (current-buffer))))))
              (when (consp object)
                (delete-region beg (point))
                (funcall object-function (car object))
                t)))))))

(defun pp-29 (beg-or-sexp &optional end) ;FIXME: Better name?
  "Prettify the current region with printed representation of a Lisp object.
Uses the pretty-printing algorithm that was standard in Emacs-29,
which, depending on `pp-use-max-width', will either use `pp-28'
or `pp-emacs-lisp-code'."
  (if pp-use-max-width
      (let ((pp--inhibit-function-formatting t)) ;FIXME: Why?
        (pp-emacs-lisp-code beg-or-sexp end))
    (pp-28 beg-or-sexp end)))

;;;###autoload
(defun pp-to-string (object &optional pp-function)
  "Return a string containing the pretty-printed representation of OBJECT.
OBJECT can be any Lisp object.  Quoting characters are used as needed
to make output that `read' can handle, whenever this is possible.
Optional argument PP-FUNCTION overrides `pp-default-function'."
  (with-temp-buffer
    (lisp-mode-variables nil)
    (set-syntax-table emacs-lisp-mode-syntax-table)
    (funcall (or pp-function pp-default-function) object)
    ;; Preserve old behavior of (usually) finishing with a newline.
    (unless (bolp) (insert "\n"))
    (buffer-string)))

(defun pp--within-fill-column-p ()
  "Return non-nil if point is within `fill-column'."
  ;; Try and make it O(fill-column) rather than O(current-column),
  ;; so as to avoid major slowdowns on long lines.
  ;; FIXME: This doesn't account for invisible text or `display' properties :-(
  (and (save-excursion
         (re-search-backward
          "^\\|\n" (max (point-min) (- (point) fill-column)) t))
       (<= (current-column) fill-column)))

(defun pp-fill (beg &optional end)
  "Break lines in Lisp code between BEG and END so it fits within `fill-column'.
Presumes the current buffer has syntax and indentation properly
configured for that.
Designed under the assumption that the region occupies a single line,
tho it should also work if that's not the case.
Can also be called with a single argument, in which case
it inserts and pretty-prints that arg at point."
  (interactive "r")
  (if (null end) (pp--object beg #'pp-fill)
    (goto-char beg)
    (let ((end (copy-marker end t))
          (newline (lambda ()
                     (skip-chars-forward ")]}")
                     (unless (save-excursion (skip-chars-forward " \t") (eolp))
                       (insert "\n")
                       (indent-according-to-mode)))))
      (while (progn (forward-comment (point-max))
                    (< (point) end))
        (let ((beg (point))
              ;; Whether we're in front of an element with paired delimiters.
              ;; Can be something funky like #'(lambda ..) or ,'#s(...)
              ;; Or also #^[..].
              (paired (when (looking-at "['`,#]*[[:alpha:]^]*\\([({[\"]\\)")
                        (match-beginning 1))))
          ;; Go to the end of the sexp.
          (goto-char (or (scan-sexps (or paired (point)) 1) end))
          (unless
              (and
               ;; The sexp is all on a single line.
               (save-excursion (not (search-backward "\n" beg t)))
               ;; And its end is within `fill-column'.
               (or (pp--within-fill-column-p)
                   ;; If the end of the sexp is beyond `fill-column',
                   ;; try to move the sexp to its own line.
                   (and
                    (save-excursion
                      (goto-char beg)
                      (if (save-excursion (skip-chars-backward " \t({[',")
                                          (bolp))
                          ;; The sexp was already on its own line.
                          nil
                        (skip-chars-backward " \t")
                        (setq beg (copy-marker beg t))
                        (if paired (setq paired (copy-marker paired t)))
                        ;; We could try to undo this insertion if it
                        ;; doesn't reduce the indentation depth, but I'm
                        ;; not sure it's worth the trouble.
                        (insert "\n") (indent-according-to-mode)
                        t))
                    ;; Check again if we moved the whole exp to a new line.
                    (pp--within-fill-column-p))))
            ;; The sexp is spread over several lines, and/or its end is
            ;; (still) beyond `fill-column'.
            (when (and paired (not (eq ?\" (char-after paired))))
              ;; The sexp has sub-parts, so let's try and spread
              ;; them over several lines.
              (save-excursion
                (goto-char beg)
                (when (looking-at "(\\([^][()\" \t\n;']+\\)")
                  ;; Inside an expression of the form (SYM ARG1
                  ;; ARG2 ... ARGn) where SYM has a `lisp-indent-function'
                  ;; property that's a number, insert a newline after
                  ;; the corresponding ARGi, because it tends to lead to
                  ;; more natural and less indented code.
                  (let* ((sym (intern-soft (match-string 1)))
                         (lif (and sym (get sym 'lisp-indent-function))))
                    (if (eq lif 'defun) (setq lif 2))
                    (when (natnump lif)
                      (goto-char (match-end 0))
                      ;; Do nothing if there aren't enough args.
                      (ignore-error scan-error
                        (forward-sexp lif)
                        (funcall newline))))))
              (save-excursion
                (pp-fill (1+ paired) (1- (point)))))
            ;; Now the sexp either ends beyond `fill-column' or is
            ;; spread over several lines (or both).  Either way, the
            ;; rest of the line should be moved to its own line.
            (funcall newline)))))))

;;;###autoload
(defun pp-buffer ()
  "Prettify the current buffer with printed representation of a Lisp object."
  (interactive)
  ;; The old code used `indent-sexp' which mostly works "anywhere",
  ;; so let's make sure we also work right in buffers that aren't
  ;; setup specifically for Lisp.
  (if (and (eq (syntax-table) emacs-lisp-mode-syntax-table)
           (eq indent-line-function #'lisp-indent-line))
      (funcall pp-default-function (point-min) (point-max))
    (with-syntax-table emacs-lisp-mode-syntax-table
        (let ((indent-line-function #'lisp-indent-line))
          (funcall pp-default-function (point-min) (point-max)))))
  ;; Preserve old behavior of (usually) finishing with a newline and
  ;; with point at BOB.
  (goto-char (point-max))
  (unless (bolp) (insert "\n"))
  (goto-char (point-min)))

(defun pp-28 (beg &optional end)        ;FIXME: Better name?
  "Prettify the current region with printed representation of a Lisp object.
Uses the pretty-printing algorithm that was standard before Emacs-30.
Non-interactively can also be called with a single argument, in which
case that argument will be inserted pretty-printed at point."
  (interactive "r")
  (if (null end) (pp--object beg #'pp-29)
    (with-restriction beg end
      (goto-char (point-min))
      (while (not (eobp))
        (cond
         ((ignore-errors (down-list 1) t)
          (save-excursion
            (backward-char 1)
            (skip-chars-backward "'`#^")
            (when (and (not (bobp)) (memq (char-before) '(?\s ?\t ?\n)))
              (delete-region
               (point)
               (progn (skip-chars-backward " \t\n") (point)))
              (insert "\n"))))
         ((ignore-errors (up-list 1) t)
          (skip-syntax-forward ")")
          (delete-region
           (point)
           (progn (skip-chars-forward " \t\n") (point)))
          (insert ?\n))
         (t (goto-char (point-max)))))
      (goto-char (point-min))
      (indent-sexp))))

;;;###autoload
(defun pp (object &optional stream)
  "Output the pretty-printed representation of OBJECT, any Lisp object.
Quoting characters are printed as needed to make output that `read'
can handle, whenever this is possible.

Uses the pretty-printing code specified in `pp-default-function'.

Output stream is STREAM, or value of `standard-output' (which see)."
  (cond
   ((and (eq (or stream standard-output) (current-buffer))
         ;; Make sure the current buffer is setup sanely.
         (eq (syntax-table) emacs-lisp-mode-syntax-table)
         (eq indent-line-function #'lisp-indent-line))
    ;; Skip the buffer->string->buffer middle man.
    (funcall pp-default-function object)
    ;; Preserve old behavior of (usually) finishing with a newline.
    (unless (bolp) (insert "\n")))
   (t
    (princ (pp-to-string object) (or stream standard-output)))))

;;;###autoload
(defun pp-display-expression (expression out-buffer-name &optional lisp)
  "Prettify and display EXPRESSION in an appropriate way, depending on length.
If LISP, format with `pp-emacs-lisp-code'; use `pp' otherwise.

If a temporary buffer is needed for representation, it will be named
after OUT-BUFFER-NAME."
  (let* ((old-show-function temp-buffer-show-function)
	 ;; Use this function to display the buffer.
	 ;; This function either decides not to display it at all
	 ;; or displays it in the usual way.
	 (temp-buffer-show-function
          (lambda (buf)
            (with-current-buffer buf
              (goto-char (point-min))
              (end-of-line 1)
              (if (or (< (1+ (point)) (point-max))
                      (>= (- (point) (point-min)) (frame-width)))
                  (let ((temp-buffer-show-function old-show-function)
                        (old-selected (selected-window))
                        (window (display-buffer buf)))
                    (goto-char (point-min)) ; expected by some hooks ...
                    (make-frame-visible (window-frame window))
                    (unwind-protect
                        (progn
                          (select-window window)
                          (run-hooks 'temp-buffer-show-hook))
                      (when (window-live-p old-selected)
                        (select-window old-selected))))
                (message "%s" (buffer-substring (point-min) (point))))))))
    (with-output-to-temp-buffer out-buffer-name
      (if lisp
          (with-current-buffer standard-output
            (pp-emacs-lisp-code expression))
        (pp expression))
      (with-current-buffer standard-output
	(emacs-lisp-mode)
	(setq buffer-read-only nil)
        (setq-local font-lock-verbose nil)))))

;;;###autoload
(defun pp-eval-expression (expression)
  "Evaluate EXPRESSION and pretty-print its value.
Also add the value to the front of the list in the variable `values'."
  (interactive
   (list (read--expression "Eval: ")))
  (message "Evaluating...")
  (let ((result (eval expression lexical-binding)))
    (values--store-value result)
    (pp-display-expression result "*Pp Eval Output*" pp-use-max-width)))

;;;###autoload
(defun pp-macroexpand-expression (expression)
  "Macroexpand EXPRESSION and pretty-print its value."
  (interactive
   (list (read--expression "Macroexpand: ")))
  (pp-display-expression (macroexpand-1 expression) "*Pp Macroexpand Output*"
                         pp-use-max-width))

(defun pp-last-sexp ()
  "Read sexp before point.  Ignore leading comment characters."
  (with-syntax-table emacs-lisp-mode-syntax-table
    (let ((pt (point)))
      (save-excursion
        (forward-sexp -1)
        ;; Make `pp-eval-last-sexp' work the same way `eval-last-sexp'
        ;; does.
        (when (looking-at ",@?")
          (goto-char (match-end 0)))
        (read
         ;; If first line is commented, ignore all leading comments:
         (if (save-excursion (beginning-of-line) (looking-at-p "[ \t]*;"))
             (let ((exp (buffer-substring (point) pt))
                   (start nil))
               (while (string-match "\n[ \t]*;+" exp start)
                 (setq start (1+ (match-beginning 0))
                       exp (concat (substring exp 0 start)
                                   (substring exp (match-end 0)))))
               exp)
           (current-buffer)))))))

;;;###autoload
(defun pp-eval-last-sexp (arg)
  "Run `pp-eval-expression' on sexp before point.
With ARG, pretty-print output into current buffer.
Ignores leading comment characters."
  (interactive "P")
  (if arg
      (insert (pp-to-string (eval (elisp--eval-defun-1
                                   (macroexpand (pp-last-sexp)))
                                  lexical-binding)))
    (pp-eval-expression (elisp--eval-defun-1
                         (macroexpand (pp-last-sexp))))))

;;;###autoload
(defun pp-macroexpand-last-sexp (arg)
  "Run `pp-macroexpand-expression' on sexp before point.
With ARG, pretty-print output into current buffer.
Ignores leading comment characters."
  (interactive "P")
  (if arg
      (insert (pp-to-string (macroexpand-1 (pp-last-sexp))))
    (pp-macroexpand-expression (pp-last-sexp))))

;;;###autoload
(defun pp-emacs-lisp-code (sexp &optional end)
  "Insert SEXP into the current buffer, formatted as Emacs Lisp code.
Use the `pp-max-width' variable to control the desired line length.
Note that this could be slow for large SEXPs.
Can also be called with two arguments, in which case they're taken to be
the bounds of a region containing Lisp code to pretty-print."
  (require 'edebug)
  (if end (pp--region sexp end #'pp-emacs-lisp-code)
    (let ((obuf (current-buffer)))
      (with-temp-buffer
        (emacs-lisp-mode)
        (pp--insert-lisp sexp)
        (insert "\n")
        (goto-char (point-min))
        (indent-sexp)
        (while (re-search-forward " +$" nil t)
          (replace-match ""))
        (insert-into-buffer obuf)))))

(defun pp--insert-lisp (sexp)
  (cl-case (type-of sexp)
    (vector (pp--format-vector sexp))
    (cons (cond
           ((consp (cdr sexp))
            (if (and (length= sexp 2)
                     (memq (car sexp) '(quote function)))
                (cond
                 ((symbolp (cadr sexp))
                  (let ((print-quoted t))
                    (prin1 sexp (current-buffer))))
                 ((consp (cadr sexp))
                  (insert (if (eq (car sexp) 'quote)
                              "'" "#'"))
                  (pp--format-list (cadr sexp)
                                   (set-marker (make-marker) (1- (point))))))
              (pp--format-list sexp)))
           (t
            (prin1 sexp (current-buffer)))))
    ;; Print some of the smaller integers as characters, perhaps?
    (integer
     (if (<= ?0 sexp ?z)
         (let ((print-integers-as-characters t))
           (princ sexp (current-buffer)))
       (princ sexp (current-buffer))))
    (string
     (let ((print-escape-newlines t))
       (prin1 sexp (current-buffer))))
    (otherwise (princ sexp (current-buffer)))))

(defun pp--format-vector (sexp)
  (insert "[")
  (cl-loop for i from 0
           for element across sexp
           do (pp--insert (and (> i 0) " ") element))
  (insert "]"))

(defun pp--format-list (sexp &optional start)
  (if (and (symbolp (car sexp))
           (not pp--inhibit-function-formatting)
           (not (keywordp (car sexp))))
      (pp--format-function sexp)
    (insert "(")
    (pp--insert start (pop sexp))
    (while sexp
      (if (consp sexp)
          (pp--insert " " (pop sexp))
        (pp--insert " . " sexp)
        (setq sexp nil)))
    (insert ")")))

(defun pp--format-function (sexp)
  (let* ((sym (car sexp))
         (edebug (get sym 'edebug-form-spec))
         (indent (get sym 'lisp-indent-function))
         (doc (get sym 'doc-string-elt)))
    (when (eq indent 'defun)
      (setq indent 2))
    ;; We probably want to keep all the elements before the doc string
    ;; on a single line.
    (when doc
      (setq indent (1- doc)))
    ;; Special-case closures -- these shouldn't really exist in actual
    ;; source code, so there's no indentation information.  But make
    ;; them output slightly better.
    (when (and (not indent)
               (eq sym 'closure))
      (setq indent 0))
    (pp--insert "(" sym)
    (pop sexp)
    ;; Get the first entries on the first line.
    (if indent
        (pp--format-definition sexp indent edebug)
      (let ((prev 0))
        (while sexp
          (let ((start (point)))
            ;; Don't put sexps on the same line as a multi-line sexp
            ;; preceding it.
            (pp--insert (if (> prev 1) "\n" " ")
                        (pop sexp))
            (setq prev (count-lines start (point)))))))
    (insert ")")))

(defun pp--format-definition (sexp indent edebug)
  (while (and (cl-plusp indent)
              sexp)
    (insert " ")
    ;; We don't understand all the edebug specs.
    (unless (consp edebug)
      (setq edebug nil))
    (if (and (consp (car edebug))
             (eq (caar edebug) '&rest))
        (pp--insert-binding (pop sexp))
      (if (null (car sexp))
          (insert "()")
        (pp--insert-lisp (car sexp)))
      (pop sexp))
    (pop edebug)
    (cl-decf indent))
  (when (stringp (car sexp))
    (insert "\n")
    (prin1 (pop sexp) (current-buffer)))
  ;; Then insert the rest with line breaks before each form.
  (while sexp
    (insert "\n")
    (if (keywordp (car sexp))
        (progn
          (pp--insert-lisp (pop sexp))
          (when sexp
            (pp--insert " " (pop sexp))))
      (pp--insert-lisp (pop sexp)))))

(defun pp--insert-binding (sexp)
  (insert "(")
  (while sexp
    (if (consp (car sexp))
        ;; Newlines after each (...) binding.
        (progn
          (pp--insert-lisp (car sexp))
          (when (cdr sexp)
            (insert "\n")))
      ;; Keep plain symbols on the same line.
      (pp--insert " " (car sexp)))
    (pop sexp))
  (insert ")"))

(defun pp--insert (delim &rest things)
  (let ((start (if (markerp delim)
                   (prog1
                       delim
                     (setq delim nil))
                 (point-marker))))
    (when delim
      (insert delim))
    (dolist (thing things)
      (pp--insert-lisp thing))
    ;; We need to indent what we have so far to see if we have to fold.
    (pp--indent-buffer)
    (when (> (current-column) (pp--max-width))
      (save-excursion
        (goto-char start)
        (unless (looking-at "[ \t]+$")
          (insert "\n"))
        (pp--indent-buffer)
        (goto-char (point-max))
        ;; If we're still too wide, then go up one step and try to
        ;; insert a newline there.
        (when (> (current-column) (pp--max-width))
          (condition-case ()
              (backward-up-list 1)
            (:success (when (and (not (bobp)) (looking-back " " 2))
                        (insert "\n")))
            (error nil)))))))

(defun pp--max-width ()
  (cond ((numberp pp-max-width)
         pp-max-width)
        ((null pp-max-width)
         most-positive-fixnum)
        ((eq pp-max-width t)
         (window-width))
        (t
         (error "Invalid pp-max-width value: %s" pp-max-width))))

(defun pp--indent-buffer ()
  (goto-char (point-min))
  (while (not (eobp))
    (lisp-indent-line)
    (forward-line 1)))

(provide 'pp)				; so (require 'pp) works

;;; pp.el ends here